更改

跳到导航 跳到搜索
第123行: 第123行:  
在上小节中,我们探讨了在时序因果隐变量和其落后期之间满足线性关系时,如何通过模型假设和添加归纳偏置的方式恢复因果隐变量和它们之间的关系。然而,线性假设是一种很强的函数形式假设,许多时序数据并不满足隐变量之间的线性假设。在这个小节,我们继续讨论在因果隐变量之间满足非线性,甚至非参数化(Nonparametric)的形式下,如何实现因果表征学习 。
 
在上小节中,我们探讨了在时序因果隐变量和其落后期之间满足线性关系时,如何通过模型假设和添加归纳偏置的方式恢复因果隐变量和它们之间的关系。然而,线性假设是一种很强的函数形式假设,许多时序数据并不满足隐变量之间的线性假设。在这个小节,我们继续讨论在因果隐变量之间满足非线性,甚至非参数化(Nonparametric)的形式下,如何实现因果表征学习 。
   −
[[File:Nonparametric Latent Causal Processes模型假设.png|400px|center|thumb|Nonparametric Latent Causal Processes模型假设]]
+
[[File:Nonparametric Latent Causal Processes模型假设.png|800px|center|thumb|Nonparametric Latent Causal Processes模型假设]]
    
与上小节相同,我们仍假设数据Xt则是隐变量Zt的非线性(但可逆)的映射。不同的是,我们不再对时序因果隐变量之间的关系或噪声分布形式做任何参数化假设。然而,天下没有免费的午餐。非参数化(Nonparametric)的假设必然需要别的代价和条件来补偿。通过理论推导 [Yao et al., 2022],我们发现在引入了因果关系指数导数之间的线性独立条件(Linear Independence Condition)后,除了Linear Gaussian Model之外的Latent Process,都有极大可能满足该线性独立条件。该条件可广泛使用于时序因果表征学习,在非参情况下寻找因果隐变量和它们的关系。
 
与上小节相同,我们仍假设数据Xt则是隐变量Zt的非线性(但可逆)的映射。不同的是,我们不再对时序因果隐变量之间的关系或噪声分布形式做任何参数化假设。然而,天下没有免费的午餐。非参数化(Nonparametric)的假设必然需要别的代价和条件来补偿。通过理论推导 [Yao et al., 2022],我们发现在引入了因果关系指数导数之间的线性独立条件(Linear Independence Condition)后,除了Linear Gaussian Model之外的Latent Process,都有极大可能满足该线性独立条件。该条件可广泛使用于时序因果表征学习,在非参情况下寻找因果隐变量和它们的关系。
7,129

个编辑

导航菜单