更改

跳到导航 跳到搜索
添加347字节 、 2024年3月5日 (星期二)
无编辑摘要
第1行: 第1行:     
== Sloppiness与Sloppy理论 ==
 
== Sloppiness与Sloppy理论 ==
sloppiness是多参数系统的中常见的一种特性。具有这种特性的模型的参数往往有很多个,但是模型的行为仅取决于少数几个参数或参数的线性组合,其它参数或参数 的线性组合对模型的影响微乎其微。sloppiness特性在系统生物学、物理学和数学系统中无处不在。
+
sloppiness是多参数系统的中常见的一种特性。具有这种特性的模型的参数往往有很多个,但是模型的行为仅取决于少数几个参数或参数的线性组合,其它参数或参数 的线性组合对模型的影响微乎其微。sloppiness特性在系统生物学<ref>Panas D, Amin H, Maccione A, Muthmann O, van Rossum M, Berdondini L,  Hennig MH (2015) 1. Sloppiness in spontaneously active neuronal networks.,Panas D, Amin H, Maccione A, Muthmann O, van Rossum M, Berdondini L,  Hennig MH,J  Neurosci. 2015 Jun 3;35(22):8480-92. doi:  10.1523/JNEUROSCI.4421-14.2015. PMID: 26041916; PMCID: PMC4452554</ref>、物理学和数学系统中无处不在。
      第16行: 第16行:  
为了表示及说明方便,取参数空间的一个二维平面截面来观察等值线,可得到形如下图香蕉形状的的成本函数等值线图。这个图的水平方向与垂直方向是按照sloppy(“欠定 ”)方向与stiff(“僵硬”)方向布置的。沿着sloppy(“欠定”)方向,成本函数变化小,而沿着stiff(“僵硬”)方向,成本函数变化大。
 
为了表示及说明方便,取参数空间的一个二维平面截面来观察等值线,可得到形如下图香蕉形状的的成本函数等值线图。这个图的水平方向与垂直方向是按照sloppy(“欠定 ”)方向与stiff(“僵硬”)方向布置的。沿着sloppy(“欠定”)方向,成本函数变化小,而沿着stiff(“僵硬”)方向,成本函数变化大。
   −
模型与实际值符合最好的参数值会使成本函数取到极值,从这个参数值局部来看,成本函数的等值线呈现为椭球形,取成本函数的黑塞矩阵<math>H_{\alpha\beta} =\partial^2C/\partial\theta_\alpha\partial\theta_\beta</math>。计算矩阵的特征值以及对应的特征向量,较大的特征值对应的特征向量方向即是stiff(“僵硬”)的。因此,特征值的平方(为了避免特征值是负的时,绝对值大但本身值很小的情况出现)即可以反应参数变化方向是stiff(“僵硬”)的还是sloppy(“欠定”)的。
+
模型与实际值符合最好的参数值会使成本函数取到极值,从这个参数值局部来看,成本函数的等值线呈现为椭球形,取成本函数的黑塞矩阵<math>H_{\alpha\beta} =\partial^2C/\partial\theta_\alpha\partial\theta_\beta</math>。计算矩阵的特征值以及对应的特征向量,较大的特征值对应的特征向量方向即是stiff(“僵硬”)的。因此,特征值的平方(为了避免特征值是负的时,绝对值大但本身值很小的情况出现)即可以反映参数变化方向是stiff(“僵硬”)的还是sloppy(“欠定”)的。
    
Sloppiness在生物学领域最为普遍,但在其它领域也并不缺席。从昆虫飞行模型,到原子间势,再到加速器设计,许多目前常用的模型都是sloppy的。例如,量子蒙特卡洛是求解原子和小分子的能量和量子行为的最精确的工具;然而,赛勒斯·乌姆里加(Cyrus Umrigar)在这种方法基础上建立的非常精确的变分波函数却是极度sloppy(b列)。
 
Sloppiness在生物学领域最为普遍,但在其它领域也并不缺席。从昆虫飞行模型,到原子间势,再到加速器设计,许多目前常用的模型都是sloppy的。例如,量子蒙特卡洛是求解原子和小分子的能量和量子行为的最精确的工具;然而,赛勒斯·乌姆里加(Cyrus Umrigar)在这种方法基础上建立的非常精确的变分波函数却是极度sloppy(b列)。
第60行: 第60行:     
这两个实验表明,在实验中可以减少测量参数的个数,并且通过选取测量的参数使实验更加有效。但是在许多情况下仍有很多问题。这里的模型是准确的,误差估计也很准确。这是建立大量已有实验的基础上,但对于未知的领域,规律往往并不清楚,虽然系统极有可能是sloppy的,但是正是因为有那些stiff(“僵硬”)的参数方向,仍然需要繁琐得测量所有参数。
 
这两个实验表明,在实验中可以减少测量参数的个数,并且通过选取测量的参数使实验更加有效。但是在许多情况下仍有很多问题。这里的模型是准确的,误差估计也很准确。这是建立大量已有实验的基础上,但对于未知的领域,规律往往并不清楚,虽然系统极有可能是sloppy的,但是正是因为有那些stiff(“僵硬”)的参数方向,仍然需要繁琐得测量所有参数。
 +
    
以上内容翻译自参考资料:
 
以上内容翻译自参考资料:

导航菜单