− | sloppiness是多参数系统的中常见的一种特性。具有这种特性的模型的参数往往有很多个,但是模型的行为仅取决于少数几个参数或参数的线性组合,其它参数或参数 的线性组合对模型的影响微乎其微。sloppiness特性在系统生物学<ref>Sloppiness in spontaneously active neuronal networks.,Panas D, Amin H, Maccione A, Muthmann O, van Rossum M, Berdondini L, Hennig MH,J Neurosci. 2015 Jun 3;35(22):8480-92. doi: 10.1523/JNEUROSCI.4421-14.2015. PMID: 26041916; PMCID: PMC4452554</ref><ref>Cortical state transitions and stimulus response evolve along stiff and sloppy parameter dimensions, respectively.Adrian Ponce-Alvarez,Gabriela Mochol, Ainhoa Hermoso-Mendizabal,Jaime de la Rocha ,Gustavo Deco, (2020)eLife 9:e53268.</ref><ref>Sloppy models and parameter indeterminacy in systems biology: [https://arxiv.org/abs/q-bio/0701039 "Universally Sloppy Parameter Sensitivities in Systems Biology"], Ryan N. Gutenkunst, Joshua J. Waterfall, Fergal P. Casey, Kevin S. Brown, Christopher R. Myers, James P. Sethna, PLoS Comput Biol3(10) e189 (2007). ([http://compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0030189 PLoS], [https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030189 doi:10.1371/journal.pcbi.0030189]), [https://sethna.lassp.cornell.edu/pubPDF/SloppyEverywhere.pdf pdf]). [Reviewed in [http://biomedicalcomputationreview.org/4/1/4.pdf NewsBytes] of [http://biomedicalcomputationreview.org/ Biomedical Computation Review] (Winter 07/08); rated "Exceptional" on Faculty of 1000]. </ref>、物理学<ref>Sloppiness, information geometry, and model reduction: [https://arxiv.org/abs/1501.07668 Perspective: Sloppiness and Emergent Theories in Physics, Biology, and Beyond], Mark K. Transtrum, Benjamin B. Machta, Kevin S. Brown, Bryan C. Daniels, Christopher R. Myers, and James P. Sethna, [https://pubs.aip.org/aip/jcp/article/143/1/010901/566995/Perspective-Sloppiness-and-emergent-theories-in J. Chem. Phys. '''143''', 010901 (2015)], </ref>和数学<ref>[https://gutengroup.mcb.arizona.edu/wp-content/uploads/Mannakee2016.pdf Sloppiness, information geometry, and model reduction: Sloppiness and the geometry of parameter space,] Mannakee B.K., Ragsdale A.P., Transtrum M.K., Gutenkunst R.N., [https://link.springer.com/chapter/10.1007/978-3-319-21296-8_11 Uncertainty in Biology, Volume 17 of the series Studies in Mechanobiology, Tissue Engineering and Biomaterials], </ref>系统中无处不在。 | + | sloppiness是多参数系统的中常见的一种特性。具有这种特性的模型的参数往往有很多个,但是模型的行为仅取决于少数几个参数或参数的线性组合,其它参数或参数 的线性组合对模型的影响微乎其微。sloppiness特性在系统生物学<ref name = "Panas">Sloppiness in spontaneously active neuronal networks.,Panas D, Amin H, Maccione A, Muthmann O, van Rossum M, Berdondini L, Hennig MH,J Neurosci. 2015 Jun 3;35(22):8480-92. doi: 10.1523/JNEUROSCI.4421-14.2015. PMID: 26041916; PMCID: PMC4452554</ref><ref>Cortical state transitions and stimulus response evolve along stiff and sloppy parameter dimensions, respectively.Adrian Ponce-Alvarez,Gabriela Mochol, Ainhoa Hermoso-Mendizabal,Jaime de la Rocha ,Gustavo Deco, (2020)eLife 9:e53268.</ref><ref>Sloppy models and parameter indeterminacy in systems biology: [https://arxiv.org/abs/q-bio/0701039 "Universally Sloppy Parameter Sensitivities in Systems Biology"], Ryan N. Gutenkunst, Joshua J. Waterfall, Fergal P. Casey, Kevin S. Brown, Christopher R. Myers, James P. Sethna, PLoS Comput Biol3(10) e189 (2007). ([http://compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0030189 PLoS], [https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030189 doi:10.1371/journal.pcbi.0030189]), [https://sethna.lassp.cornell.edu/pubPDF/SloppyEverywhere.pdf pdf]). [Reviewed in [http://biomedicalcomputationreview.org/4/1/4.pdf NewsBytes] of [http://biomedicalcomputationreview.org/ Biomedical Computation Review] (Winter 07/08); rated "Exceptional" on Faculty of 1000]. </ref>、物理学<ref>Sloppiness, information geometry, and model reduction: [https://arxiv.org/abs/1501.07668 Perspective: Sloppiness and Emergent Theories in Physics, Biology, and Beyond], Mark K. Transtrum, Benjamin B. Machta, Kevin S. Brown, Bryan C. Daniels, Christopher R. Myers, and James P. Sethna, [https://pubs.aip.org/aip/jcp/article/143/1/010901/566995/Perspective-Sloppiness-and-emergent-theories-in J. Chem. Phys. '''143''', 010901 (2015)], </ref>和数学<ref>[https://gutengroup.mcb.arizona.edu/wp-content/uploads/Mannakee2016.pdf Sloppiness, information geometry, and model reduction: Sloppiness and the geometry of parameter space,] Mannakee B.K., Ragsdale A.P., Transtrum M.K., Gutenkunst R.N., [https://link.springer.com/chapter/10.1007/978-3-319-21296-8_11 Uncertainty in Biology, Volume 17 of the series Studies in Mechanobiology, Tissue Engineering and Biomaterials], </ref>系统中无处不在。 |
− | 即便参数值与真实值相差很大,有sloppy特性的模型也可以做出精确的预测。在数学中有一个经典的拟合难题<ref>Formulation, application to fitting algorithms: [https://arxiv.org/abs/0909.3884 "Why are nonlinear fits to data so challenging?"], Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna, [https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.060201 Phys. Rev. Lett.] '''104''', 060201 (2010).</ref>:用指数衰变和去拟合放射性模型(c列和d列)得到的衰变常数与真实衰变常数截然不同,但短期内模型预测值与真实值却相差不大 。最后,用多项式系数模型<math>\sum_i a_it^i</math>拟合数据是sloppy的(h列)。但用正交多项式基<math>\sum_ib_iH_i</math>(<math>H_i</math>是一组正交多项式基)去拟合时得到的模型却往往是非sloppy的,这是因为从<math>t^i</math>到<math>H_i</math>的变换是高度非正交的。 | + | 即便参数值与真实值相差很大,有sloppy特性的模型也可以做出精确的预测。在数学中有一个经典的拟合难题<ref>Formulation, application to fitting algorithms: [https://arxiv.org/abs/0909.3884 "Why are nonlinear fits to data so challenging?"], Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna, [https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.060201 Phys. Rev. Lett.] '''104''', 060201 (2010).</ref>:用指数衰变和去拟合放射性模型(c列和d列)得到的衰变常数与真实衰变常数截然不同,但短期内模型预测值与真实值却相差不大 。最后,用多项式系数模型<math>\sum_i a_it^i</math>拟合数据是sloppy的(h列)。但用正交多项式基<math>\sum_ib_iH_i</math>(<math>H_i</math>是一组正交多项式基)去拟合时得到的模型却往往是非sloppy的,这是因为从<math>t^i</math>到<math>H_i</math>的变换是高度非正交的<ref>Expanded formulation, geometry of model manifold: [[9. Expanded formulation, geometry of model manifold: "Geometry of nonlinear least squares with applications to sloppy models and optimization", Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna Phys. Rev. E 83, 036701 (2011); |"Geometry of nonlinear least squares with applications to sloppy models and optimization"]], Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna [https://journals.aps.org/pre/abstract/10.1103/PhysRevE.83.036701 Phys. Rev. E '''83''', 036701 (2011)]; </ref>。 |