针对复杂系统自动建模任务,我们往往使用神经网络来建模系统动力学。具体的,对于前馈神经网络来说,张江等人推导出了前馈神经网络有效信息的计算公式,其中神经网络的输入是<math>x(x_1,...,x_n)</math>,输出是<math>y(y_1,...,y_n)</math>,其中<math>y=f(x)</math>,<math>f</math>是由神经网络实现的确定性映射。通过将神经网络看作是给定输入<math>x</math>的条件高斯分布,我们可以给出神经网络有效信息的一般计算公式: | 针对复杂系统自动建模任务,我们往往使用神经网络来建模系统动力学。具体的,对于前馈神经网络来说,张江等人推导出了前馈神经网络有效信息的计算公式,其中神经网络的输入是<math>x(x_1,...,x_n)</math>,输出是<math>y(y_1,...,y_n)</math>,其中<math>y=f(x)</math>,<math>f</math>是由神经网络实现的确定性映射。通过将神经网络看作是给定输入<math>x</math>的条件高斯分布,我们可以给出神经网络有效信息的一般计算公式: |