然而,传统的EI主要被用于具有离散状态的[[马尔科夫链]]上。为了能扩充到一般的实数域,P. Chvykov和E. Hoel于2020年合作提出了[[因果几何]]理论<ref name=Chvykov_causal_geometry>{{cite journal|author1=Chvykov P|author2=Hoel E.|title=Causal Geometry|journal=Entropy|year=2021|volume=23|issue=1|page=24|url=https://doi.org/10.3390/e2}}</ref>,将EI的定义扩充到了具备连续状态变量的函数映射上,并通过结合[[信息几何]]理论,探讨了EI的一种微扰形式,并与[[Fisher信息]]指标进行了比较,提出了[[因果几何]]的概念。然而,这一连续变量的EI计算方法需要假设方程中的正态分布随机变量的方差是无限小的,这一要求显然过于苛刻了。 | 然而,传统的EI主要被用于具有离散状态的[[马尔科夫链]]上。为了能扩充到一般的实数域,P. Chvykov和E. Hoel于2020年合作提出了[[因果几何]]理论<ref name=Chvykov_causal_geometry>{{cite journal|author1=Chvykov P|author2=Hoel E.|title=Causal Geometry|journal=Entropy|year=2021|volume=23|issue=1|page=24|url=https://doi.org/10.3390/e2}}</ref>,将EI的定义扩充到了具备连续状态变量的函数映射上,并通过结合[[信息几何]]理论,探讨了EI的一种微扰形式,并与[[Fisher信息]]指标进行了比较,提出了[[因果几何]]的概念。然而,这一连续变量的EI计算方法需要假设方程中的正态分布随机变量的方差是无限小的,这一要求显然过于苛刻了。 |