更改
跳到导航
跳到搜索
←上一编辑
下一编辑→
NIS
(查看源代码)
2024年7月16日 (二) 14:49的版本
添加21字节
、
2024年7月16日 (星期二)
改进NIS框架简介图
第43行:
第43行:
<math>\max_{\phi_q,\hat{f}_{\phi_q},\phi_q^†,q} \mathcal{I}(\hat{f}_{\phi_q})</math>
<math>\max_{\phi_q,\hat{f}_{\phi_q},\phi_q^†,q} \mathcal{I}(\hat{f}_{\phi_q})</math>
−
其中[math]\displaystyle{ \mathcal{I} }[/math]是有效信息的度量(可以是EI、Eff 或NIS主要使用的维度平均 EI,即dEI)。[math]\displaystyle{ \phi_q }[/math]是一种有效的粗粒化策略,[math]\displaystyle{ \hat{f}_{\phi_q} }[/math]是一种有效的宏观动力学。
+
<nowiki>
其中[math]\displaystyle{ \mathcal{I} }[/math]是有效信息的度量(可以是EI、Eff 或NIS主要使用的维度平均 EI,即dEI)。[math]\displaystyle{ \phi_q }[/math]是一种有效的粗粒化策略,[math]\displaystyle{ \hat{f}_{\phi_q}}[/math]是一种有效的宏观动力学。
</nowiki>
该定义符合近似因果模型的抽象。
该定义符合近似因果模型的抽象。
−
==神经网络框架 ==
+
==神经网络框架==
−
[[文件:
NIS简介
.png||居中|
400px
|NIS框架简介]]
+
[[文件:
NIS Graph New
.png||居中|
600px
|NIS框架简介]]
第176行:
第176行:
=NIS的理论性质=
=NIS的理论性质=
−
==压缩信道理论==
+
==压缩信道理论 ==
[[文件:NIS Fig 3.png|居中|600px|'''图3.''' 神经信息压缩器压缩信道的图形模型。]]
[[文件:NIS Fig 3.png|居中|600px|'''图3.''' 神经信息压缩器压缩信道的图形模型。]]
NIS框架(图 1)可以看作图 3 所示的信道,由于投影操作的存在,通道在中间被压缩。此为压缩信息通道。
NIS框架(图 1)可以看作图 3 所示的信道,由于投影操作的存在,通道在中间被压缩。此为压缩信息通道。
第290行:
第290行:
将学习到的宏观动力学可视化(图 6c)。 <math>y_t < 0</math> 时宏观动力学是一个线性映射,<math>y_t > 0</math> 时它可被视为一个常数。因此,该动力学可以保证所有前七个微状态都可以与最后一个状态分离。图6d验证了定理2。
将学习到的宏观动力学可视化(图 6c)。 <math>y_t < 0</math> 时宏观动力学是一个线性映射,<math>y_t > 0</math> 时它可被视为一个常数。因此,该动力学可以保证所有前七个微状态都可以与最后一个状态分离。图6d验证了定理2。
−
==简单布尔网络==
+
==简单布尔网络 ==
[[文件:NIS Fig 7.png|居中|600px|'''图7.''' 布尔网络样例(左)及其原理(右)。]]
[[文件:NIS Fig 7.png|居中|600px|'''图7.''' 布尔网络样例(左)及其原理(右)。]]
布尔网络是离散动力系统的典型例子,其中每个节点有两种可能的状态(0 或 1),且节点状态受其相邻节点状态的影响。该网络的微观机制如下:图 7 展示了一个包含四个节点的布尔网络示例,每个节点的状态受到其相邻节点状态组合的概率影响,具体概率见图 7 中的表格。将所有节点的机制结合后,可以得到一个具有 <math>2^4 = 16</math> 个状态的大型马尔可夫转移矩阵。
布尔网络是离散动力系统的典型例子,其中每个节点有两种可能的状态(0 或 1),且节点状态受其相邻节点状态的影响。该网络的微观机制如下:图 7 展示了一个包含四个节点的布尔网络示例,每个节点的状态受到其相邻节点状态组合的概率影响,具体概率见图 7 中的表格。将所有节点的机制结合后,可以得到一个具有 <math>2^4 = 16</math> 个状态的大型马尔可夫转移矩阵。
LJR.json
68
个编辑
导航菜单
个人工具
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
集智百科
集智主页
集智斑图
集智学园
最近更改
所有页面
帮助
工具
特殊页面
可打印版本