更改

跳到导航 跳到搜索
删除18字节 、 2024年7月19日 (星期五)
更改中文名词翻译
第7行: 第7行:  
尽管已经存在许多跨时间和空间尺度的[[因果涌现]]的具体例子,我们仍然需要一种仅从数据中识别因果涌现的方法。解决这一问题的困难主要在于,需要一种方法来系统地、自动地搜索所有可能的粗粒化策略(函数、映射),从而显示因果涌现。但搜索空间是微观和宏观之间所有可能的映射函数,体量非常巨大。为了解决这个问题,Klein 等人重点研究了具有网络结构的复杂系统,将粗粒化问题转化为节点聚类,即找到一种方法将节点分组,使得簇级别的连接比原始网络具有更大的[[有效信息]]。虽然该方法假设底层节点动态是扩散(随机游走)的,它还是被广泛应用于各个领域。同时,现实世界中的的复杂系统具有更丰富的节点动态。对于一般的动态系统,即使给定节点分组,粗粒化策略仍然需要考虑如何将簇中所有节点的微观状态映射到簇的宏观状态,也需要在巨大的粗粒化策略函数空间上进行繁琐的搜索。
 
尽管已经存在许多跨时间和空间尺度的[[因果涌现]]的具体例子,我们仍然需要一种仅从数据中识别因果涌现的方法。解决这一问题的困难主要在于,需要一种方法来系统地、自动地搜索所有可能的粗粒化策略(函数、映射),从而显示因果涌现。但搜索空间是微观和宏观之间所有可能的映射函数,体量非常巨大。为了解决这个问题,Klein 等人重点研究了具有网络结构的复杂系统,将粗粒化问题转化为节点聚类,即找到一种方法将节点分组,使得簇级别的连接比原始网络具有更大的[[有效信息]]。虽然该方法假设底层节点动态是扩散(随机游走)的,它还是被广泛应用于各个领域。同时,现实世界中的的复杂系统具有更丰富的节点动态。对于一般的动态系统,即使给定节点分组,粗粒化策略仍然需要考虑如何将簇中所有节点的微观状态映射到簇的宏观状态,也需要在巨大的粗粒化策略函数空间上进行繁琐的搜索。
   −
当我们考虑所有可能的映射时,另一个难点是如何避免使用琐碎的粗粒化策略。一种简单的方法是将所有微观状态的值映射到与宏观状态相同的值。这样,系统的宏观动力学就只是一个相同的映射,它将具有较大的有效信息 (EI) 度量。但这种方法不能称为因果涌现,因为所有信息都被粗粒化方法本身抹去了。因此,我们必须找到一种方法来排除这种琐碎的策略。
+
当我们考虑所有可能的映射时,另一个难点是如何避免使用琐碎的粗粒化策略。一种简单的方法是将所有微观状态的值映射到与宏观状态相同的值。这样,系统的宏观动力学就只是一个相同的映射,它将具有较大的有效信息 (EI) 度量。但这种方法不能称为因果涌现,因为所有信息都被粗粒化方法本身抹去了。因此,我们必须找到一种方法来排除这种平凡解。
    
另一种从数据中识别因果涌现的方法是部分信息分解方法。虽然基于信息分解的方法可以避免对粗粒化策略的讨论,但是如果我们想获得精确的结果,也需要在系统状态空间的子集上进行长时间的搜索。此外,已发表的数值近似方法只能提供充分条件。同时,该方法不能给出具有现实意义的、明确的粗粒化策略和相应的宏观动力学。上述两种方法的另一个共同缺点是需要一个明确的宏观和微观动力学的马尔可夫转移矩阵才可以从数据中估计转移概率。因此,上述方法对罕见事件概率的预测将产生几乎无法避免的、较大的偏差,尤其对于连续数据。
 
另一种从数据中识别因果涌现的方法是部分信息分解方法。虽然基于信息分解的方法可以避免对粗粒化策略的讨论,但是如果我们想获得精确的结果,也需要在系统状态空间的子集上进行长时间的搜索。此外,已发表的数值近似方法只能提供充分条件。同时,该方法不能给出具有现实意义的、明确的粗粒化策略和相应的宏观动力学。上述两种方法的另一个共同缺点是需要一个明确的宏观和微观动力学的马尔可夫转移矩阵才可以从数据中估计转移概率。因此,上述方法对罕见事件概率的预测将产生几乎无法避免的、较大的偏差,尤其对于连续数据。
第86行: 第86行:  
其中<math>\mathbf{y} ∈ \mathcal{R}^q</math> , <math>ξ' ∈ \mathcal{R}^q</math> 是宏观状态动力学中的高斯噪声,<math>\hat{f}_{\phi_q}</math>  是连续微分函数,可最小化方程{{EquationNote|2}}在任何给定的时间步长 <math>t ∈ [1,T]</math> 和给定的向量形式<math>\Vert \cdot \Vert</math> 下的解  
 
其中<math>\mathbf{y} ∈ \mathcal{R}^q</math> , <math>ξ' ∈ \mathcal{R}^q</math> 是宏观状态动力学中的高斯噪声,<math>\hat{f}_{\phi_q}</math>  是连续微分函数,可最小化方程{{EquationNote|2}}在任何给定的时间步长 <math>t ∈ [1,T]</math> 和给定的向量形式<math>\Vert \cdot \Vert</math> 下的解  
 
{{NumBlk|:|<math>\mathbf{y}(t)</math> :<blockquote><math>\langle \Vert \mathbf{y}_t-\mathbf{y}(t)\Vert \rangle_{ξ'}</math></blockquote>|{{EquationRef|3}}}}
 
{{NumBlk|:|<math>\mathbf{y}(t)</math> :<blockquote><math>\langle \Vert \mathbf{y}_t-\mathbf{y}(t)\Vert \rangle_{ξ'}</math></blockquote>|{{EquationRef|3}}}}
此公式不能排除一些琐碎的策略。例如,假设对于 <math>∀ \mathbf{y}_t ∈ \mathcal{R}^p</math>  , <math>q = 1</math> 维的 <math>\phi_q</math> 定义为 <math>\phi_q(\mathbf{x}_t) = 1</math> 。因此,相应的宏观动力学只是 <math>d\mathbf{y}/dt = 0</math> 和 <math>\mathbf{y}(0) = 1</math>。由于宏观状态动力学是琐碎的,粗粒化映射过于随意,此方程无意义。因此,必须对粗粒化策略和宏观动力学设置限制以避免琐碎的策略和动力学。
+
此公式不能排除一些平凡解。例如,假设对于 <math>∀ \mathbf{y}_t ∈ \mathcal{R}^p</math>  , <math>q = 1</math> 维的 <math>\phi_q</math> 定义为 <math>\phi_q(\mathbf{x}_t) = 1</math> 。因此,相应的宏观动力学只是 <math>d\mathbf{y}/dt = 0</math> 和 <math>\mathbf{y}(0) = 1</math>。由于宏观状态动力学是琐碎的,粗粒化映射过于随意,此方程无意义。因此,必须对粗粒化策略和宏观动力学设置限制以避免平凡解和动力学。
    
===有效粗粒化策略和宏观动力学===
 
===有效粗粒化策略和宏观动力学===
68

个编辑

导航菜单