目前,机器学习需要在训练数据和测试数据是独立同分布(Independent and Identically Distributed,简称IID)的基础之上,这是一种理想化的假设。现实应用中,几乎不能满足IID假设,所以模型的性能都会有不同程度的下降<ref>Cui, Peng, Athey, et al. Stable learning establishes some common ground between causal inference and machine learning''. nature machine intelligence'', 2022, 4(2): 110-115</ref>。
+
目前,机器学习需要在训练数据和测试数据是独立同分布(Independent and Identically Distributed,简称IID)的基础之上,这是一种理想化的假设。现实应用中,几乎不能满足IID假设,所以模型的性能都会有不同程度的下降<ref name=":4">Cui, Peng, Athey, et al. Stable learning establishes some common ground between causal inference and machine learning''. nature machine intelligence'', 2022, 4(2): 110-115</ref>。