更改

跳到导航 跳到搜索
添加11字节 、 2020年4月18日 (六) 14:21
无编辑摘要
第43行: 第43行:  
在数学中,分形的生成是基于一个不断迭代的方程,即一种基于递归的反馈系统。分形有几种类型,可以分别依据表现出的精确自相似性、半自相似性和统计自相似性来定义。如何良好的定义分形这一概念,权威学者之间仍有争论。曼德布洛特自己将分形总结为:“美丽、(研究起来)极其困难但又非常的有用,这就是分形”。<ref>{{cite web |last=Mandelbrot |first=Benoit |title=24/7 Lecture on Fractals |url=https://www.youtube.com/watch?v=5e7HB5Oze4g#t=70 |work=2006 Ig Nobel Awards |publisher=Improbable Research}}</ref>  1982 年曼德布洛特提出了更正式的定义:“分形是一种其'''豪斯多夫维数  Hausdorff–Besicovitch Dimension''' 严格大于拓扑维数的集合”。<ref>Mandelbrot, B. B.: The Fractal Geometry of Nature. W. H. Freeman and Company, New York (1982); p. 15.</ref>后来他认为这种定义过于严格,于是简化并扩展了这个定义:“分形是由与整体在某些方面相似的部分构成的图形。”<ref>{{cite book |author=Jens Feder |title=Fractals |url=https://books.google.com/books?id=mgvyBwAAQBAJ&pg=PA11 |year=2013 |publisher=Springer Science & Business Media |isbn=978-1-4899-2124-6 |page=11}}</ref> 又过了一段时间,曼德布洛特决定使用以下方式来描述分形:“...在研究和使用分形 时,不需要迂腐的定义。用分形维数作为描述各种不同分型的通用术语”。 <ref>{{cite book |author=Gerald Edgar |title=Measure, Topology, and Fractal Geometry |url=https://books.google.com/books?id=dk2vruTv0_gC&pg=PR7 |year=2007 |publisher=Springer Science & Business Media |isbn=978-0-387-74749-1 |page=7}}</ref>
 
在数学中,分形的生成是基于一个不断迭代的方程,即一种基于递归的反馈系统。分形有几种类型,可以分别依据表现出的精确自相似性、半自相似性和统计自相似性来定义。如何良好的定义分形这一概念,权威学者之间仍有争论。曼德布洛特自己将分形总结为:“美丽、(研究起来)极其困难但又非常的有用,这就是分形”。<ref>{{cite web |last=Mandelbrot |first=Benoit |title=24/7 Lecture on Fractals |url=https://www.youtube.com/watch?v=5e7HB5Oze4g#t=70 |work=2006 Ig Nobel Awards |publisher=Improbable Research}}</ref>  1982 年曼德布洛特提出了更正式的定义:“分形是一种其'''豪斯多夫维数  Hausdorff–Besicovitch Dimension''' 严格大于拓扑维数的集合”。<ref>Mandelbrot, B. B.: The Fractal Geometry of Nature. W. H. Freeman and Company, New York (1982); p. 15.</ref>后来他认为这种定义过于严格,于是简化并扩展了这个定义:“分形是由与整体在某些方面相似的部分构成的图形。”<ref>{{cite book |author=Jens Feder |title=Fractals |url=https://books.google.com/books?id=mgvyBwAAQBAJ&pg=PA11 |year=2013 |publisher=Springer Science & Business Media |isbn=978-1-4899-2124-6 |page=11}}</ref> 又过了一段时间,曼德布洛特决定使用以下方式来描述分形:“...在研究和使用分形 时,不需要迂腐的定义。用分形维数作为描述各种不同分型的通用术语”。 <ref>{{cite book |author=Gerald Edgar |title=Measure, Topology, and Fractal Geometry |url=https://books.google.com/books?id=dk2vruTv0_gC&pg=PR7 |year=2007 |publisher=Springer Science & Business Media |isbn=978-0-387-74749-1 |page=7}}</ref>
 
人们一致认为理论上的分形是无限迭代、自相似的、具有分形维数的精密数学结构,人们创造了许多分形图案并进行了充分的研究。<ref name="Mandelbrot1983" /><ref name="Falconer" /><ref name="patterns">{{Cite book |title=Fractals:The Patterns of Chaos |last=Briggs |first=John |year= 1992 |publisher= Thames and Hudson |location= London |isbn=978-0-500-27693-8 |page=148 }}</ref> 分形并不限于几何图形,它也可以描述时间序列。 虽然分形是一种数学构造,它们同样可以在自然界中被找到,这使得它们被划入艺术作品的范畴。分形在医学、土力学、地震学和技术分析中都有应用。<ref name="Gouyet" /><ref name="vicsek" /><ref name="time series" /><ref>{{cite journal | last1 = Krapivsky | first1 = P. L. | last2 = Ben-Naim | first2 = E. | year = 1994 | title = Multiscaling in Stochastic Fractals | url = | journal = Physics Letters A | volume = 196 | issue = 3–4| page = 168 | doi=10.1016/0375-9601(94)91220-3| bibcode = 1994PhLA..196..168K }}</ref><ref>{{cite journal | last1 = Hassan | first1 = M. K. | last2 = Rodgers | first2 = G. J. | year = 1995 | title = Models of fragmentation and stochastic fractals | journal = Physics Letters A | volume = 208 | issue = 1–2 | page = 95 | doi=10.1016/0375-9601(95)00727-k| bibcode = 1995PhLA..208...95H }}</ref><ref>{{cite journal | last1 = Hassan | first1 = M. K. | last2 = Pavel | first2 = N. I. | last3 = Pandit | first3 = R. K. | last4 = Kurths | first4 = J. | year = 2014 | title = Dyadic Cantor set and its kinetic and stochastic counterpart | journal = Chaos, Solitons & Fractals | volume = 60 | issue = | pages = 31–39 | doi=10.1016/j.chaos.2013.12.010| bibcode = 2014CSF....60...31H | arxiv = 1401.0249 }}</ref>  在自然<ref name="heart" /><ref name="heartrate" /><ref name="cerebellum">{{Cite journal | last1=Liu | first1=Jing Z. | last2=Zhang | first2=Lu D. | last3=Yue | first3=Guang H. | doi=10.1016/S0006-3495(03)74817-6 | title=Fractal Dimension in Human Cerebellum Measured by Magnetic Resonance Imaging | journal=Biophysical Journal | volume=85 | issue=6 | pages=4041–4046 | year=2003 | pmid=14645092 | pmc=1303704|bibcode = 2003BpJ....85.4041L }}</ref><ref name="neuroscience">{{Cite journal | last1=Karperien | first1=Audrey L. | last2=Jelinek | first2=Herbert F. | last3=Buchan | first3=Alastair M. | doi=10.1142/S0218348X08003880 | title=Box-Counting Analysis of Microglia Form in Schizophrenia, Alzheimer's Disease and Affective Disorder | journal=Fractals | volume=16 | issue=2 | pages=103 | year=2008 | pmid= | pmc=}}</ref><ref name="branching" />、技术<ref name="soil">{{Cite journal | last1=Hu | first1=Shougeng | last2=Cheng | first2=Qiuming | last3=Wang | first3=Le | last4=Xie | first4=Shuyun | title=Multifractal characterization of urban residential land price in space and time | doi=10.1016/j.apgeog.2011.10.016 | journal=Applied Geography | volume=34 | pages=161–170 | year=2012 | pmid= | pmc=}}</ref><ref name="diagnostic imaging">{{Cite journal | last1=Karperien | first1=Audrey | last2=Jelinek | first2=Herbert F. | last3=Leandro | first3=Jorge de Jesus Gomes| last4=Soares | first4=João V. B. | last5=Cesar Jr | first5=Roberto M. | last6=Luckie | first6=Alan | title=Automated detection of proliferative retinopathy in clinical practice | journal=Clinical Ophthalmology (Auckland, N.Z.) | volume=2 | issue=1 | pages=109–122 | year=2008 | pmid=19668394 | pmc=2698675| doi=10.2147/OPTH.S1579}}</ref><ref name="medicine">{{cite book|first1=Gabriele A. |last1=Losa |first2=Theo F. |last2=Nonnenmacher |title=Fractals in biology and medicine |url=https://books.google.com/books?id=t9l9GdAt95gC |year=2005 |publisher=Springer|isbn=978-3-7643-7172-2}}</ref><ref name="seismology" />、艺术<ref name="novel" /><ref name="African art" />、建筑<ref name="springer.com 9783319324241">Ostwald, Michael J., and Vaughan, Josephine (2016) [https://www.springer.com/gp/book/9783319324241 The Fractal Dimension of Architecture]. Birhauser, Basel. {{doi|10.1007/978-3-319-32426-5}}.</ref> 和法律<ref name="legal fractal">{{cite journal |ssrn=2157804 |first=Andrew |last=Stumpff |title=The Law is a Fractal: The Attempt to Anticipate Everything |publisher=Loyola University Chicago Law Journal |page=649 |year=2013 |volume=44}}</ref>等领域,人们对图形、结构和音频中<ref name="music">{{Cite journal | last1=Brothers | first1=Harlan J. | doi=10.1142/S0218348X0700337X | title=Structural Scaling in Bach's Cello Suite No. 3 | journal=Fractals | volume=15 | issue=1 | pages=89–95 | year=2007 | pmid= | pmc=}}</ref> 不同程度自相似的分形图形进行了研究,并反过来利用分形理论去生成新的图形、结构和音频。此外,分形和[[混沌理论  Chaos Theory]]密切相关,因为混沌过程的图形大多数都是分形。<ref>{{cite web |url=http://necsi.edu/projects/baranger/cce.pdf| first=Michael |last=Baranger |title=Chaos, Complexity, and Entropy: A physics talk for non-physicists}}</ref>
 
人们一致认为理论上的分形是无限迭代、自相似的、具有分形维数的精密数学结构,人们创造了许多分形图案并进行了充分的研究。<ref name="Mandelbrot1983" /><ref name="Falconer" /><ref name="patterns">{{Cite book |title=Fractals:The Patterns of Chaos |last=Briggs |first=John |year= 1992 |publisher= Thames and Hudson |location= London |isbn=978-0-500-27693-8 |page=148 }}</ref> 分形并不限于几何图形,它也可以描述时间序列。 虽然分形是一种数学构造,它们同样可以在自然界中被找到,这使得它们被划入艺术作品的范畴。分形在医学、土力学、地震学和技术分析中都有应用。<ref name="Gouyet" /><ref name="vicsek" /><ref name="time series" /><ref>{{cite journal | last1 = Krapivsky | first1 = P. L. | last2 = Ben-Naim | first2 = E. | year = 1994 | title = Multiscaling in Stochastic Fractals | url = | journal = Physics Letters A | volume = 196 | issue = 3–4| page = 168 | doi=10.1016/0375-9601(94)91220-3| bibcode = 1994PhLA..196..168K }}</ref><ref>{{cite journal | last1 = Hassan | first1 = M. K. | last2 = Rodgers | first2 = G. J. | year = 1995 | title = Models of fragmentation and stochastic fractals | journal = Physics Letters A | volume = 208 | issue = 1–2 | page = 95 | doi=10.1016/0375-9601(95)00727-k| bibcode = 1995PhLA..208...95H }}</ref><ref>{{cite journal | last1 = Hassan | first1 = M. K. | last2 = Pavel | first2 = N. I. | last3 = Pandit | first3 = R. K. | last4 = Kurths | first4 = J. | year = 2014 | title = Dyadic Cantor set and its kinetic and stochastic counterpart | journal = Chaos, Solitons & Fractals | volume = 60 | issue = | pages = 31–39 | doi=10.1016/j.chaos.2013.12.010| bibcode = 2014CSF....60...31H | arxiv = 1401.0249 }}</ref>  在自然<ref name="heart" /><ref name="heartrate" /><ref name="cerebellum">{{Cite journal | last1=Liu | first1=Jing Z. | last2=Zhang | first2=Lu D. | last3=Yue | first3=Guang H. | doi=10.1016/S0006-3495(03)74817-6 | title=Fractal Dimension in Human Cerebellum Measured by Magnetic Resonance Imaging | journal=Biophysical Journal | volume=85 | issue=6 | pages=4041–4046 | year=2003 | pmid=14645092 | pmc=1303704|bibcode = 2003BpJ....85.4041L }}</ref><ref name="neuroscience">{{Cite journal | last1=Karperien | first1=Audrey L. | last2=Jelinek | first2=Herbert F. | last3=Buchan | first3=Alastair M. | doi=10.1142/S0218348X08003880 | title=Box-Counting Analysis of Microglia Form in Schizophrenia, Alzheimer's Disease and Affective Disorder | journal=Fractals | volume=16 | issue=2 | pages=103 | year=2008 | pmid= | pmc=}}</ref><ref name="branching" />、技术<ref name="soil">{{Cite journal | last1=Hu | first1=Shougeng | last2=Cheng | first2=Qiuming | last3=Wang | first3=Le | last4=Xie | first4=Shuyun | title=Multifractal characterization of urban residential land price in space and time | doi=10.1016/j.apgeog.2011.10.016 | journal=Applied Geography | volume=34 | pages=161–170 | year=2012 | pmid= | pmc=}}</ref><ref name="diagnostic imaging">{{Cite journal | last1=Karperien | first1=Audrey | last2=Jelinek | first2=Herbert F. | last3=Leandro | first3=Jorge de Jesus Gomes| last4=Soares | first4=João V. B. | last5=Cesar Jr | first5=Roberto M. | last6=Luckie | first6=Alan | title=Automated detection of proliferative retinopathy in clinical practice | journal=Clinical Ophthalmology (Auckland, N.Z.) | volume=2 | issue=1 | pages=109–122 | year=2008 | pmid=19668394 | pmc=2698675| doi=10.2147/OPTH.S1579}}</ref><ref name="medicine">{{cite book|first1=Gabriele A. |last1=Losa |first2=Theo F. |last2=Nonnenmacher |title=Fractals in biology and medicine |url=https://books.google.com/books?id=t9l9GdAt95gC |year=2005 |publisher=Springer|isbn=978-3-7643-7172-2}}</ref><ref name="seismology" />、艺术<ref name="novel" /><ref name="African art" />、建筑<ref name="springer.com 9783319324241">Ostwald, Michael J., and Vaughan, Josephine (2016) [https://www.springer.com/gp/book/9783319324241 The Fractal Dimension of Architecture]. Birhauser, Basel. {{doi|10.1007/978-3-319-32426-5}}.</ref> 和法律<ref name="legal fractal">{{cite journal |ssrn=2157804 |first=Andrew |last=Stumpff |title=The Law is a Fractal: The Attempt to Anticipate Everything |publisher=Loyola University Chicago Law Journal |page=649 |year=2013 |volume=44}}</ref>等领域,人们对图形、结构和音频中<ref name="music">{{Cite journal | last1=Brothers | first1=Harlan J. | doi=10.1142/S0218348X0700337X | title=Structural Scaling in Bach's Cello Suite No. 3 | journal=Fractals | volume=15 | issue=1 | pages=89–95 | year=2007 | pmid= | pmc=}}</ref> 不同程度自相似的分形图形进行了研究,并反过来利用分形理论去生成新的图形、结构和音频。此外,分形和[[混沌理论  Chaos Theory]]密切相关,因为混沌过程的图形大多数都是分形。<ref>{{cite web |url=http://necsi.edu/projects/baranger/cce.pdf| first=Michael |last=Baranger |title=Chaos, Complexity, and Entropy: A physics talk for non-physicists}}</ref>
 +
    
==引言==
 
==引言==
第62行: 第63行:     
科赫雪花是一种分形,它以一个等边三角形开始,然后用一对构成等边凸点的线段去替换每个线段的三等分点
 
科赫雪花是一种分形,它以一个等边三角形开始,然后用一对构成等边凸点的线段去替换每个线段的三等分点
 +
    
==历史==
 
==历史==
第99行: 第101行:     
而对于中国而言,最早把分形几何引进中国的可能是中科院沈阳金属研究所的龙期威研究员,他曾是中国科学技术大学教授并任中科院国际材料物理中心主任。他率先把分形理论应用于金属断裂研究,并培养了把分形方法引入到裂隙岩体非连续变形、强度和断裂破坏行为研究的一位优秀学生,也就是四川大学现任校长谢和平院士。
 
而对于中国而言,最早把分形几何引进中国的可能是中科院沈阳金属研究所的龙期威研究员,他曾是中国科学技术大学教授并任中科院国际材料物理中心主任。他率先把分形理论应用于金属断裂研究,并培养了把分形方法引入到裂隙岩体非连续变形、强度和断裂破坏行为研究的一位优秀学生,也就是四川大学现任校长谢和平院士。
 +
    
==定义和相关特征==
 
==定义和相关特征==
第125行: 第128行:     
按照这些标准,可以排除某些不确定其是不是分形的情况。比如那些可能自相似但没有其他典型的分形特征的情况。以一条直线举例,它是自相似的,但不是分形,因为它缺乏细节,而且可以用欧几里德语言进行简单描述,具有与拓扑维数相同的分形维数,并且完全不需要递归进行准确定义。<ref name="Mandelbrot1983" /><ref name="vicsek" />
 
按照这些标准,可以排除某些不确定其是不是分形的情况。比如那些可能自相似但没有其他典型的分形特征的情况。以一条直线举例,它是自相似的,但不是分形,因为它缺乏细节,而且可以用欧几里德语言进行简单描述,具有与拓扑维数相同的分形维数,并且完全不需要递归进行准确定义。<ref name="Mandelbrot1983" /><ref name="vicsek" />
 +
    
==生成分形的常用技术==
 
==生成分形的常用技术==
第138行: 第142行:  
*随机分形-使用随机规则:例如:'''对莱维飞行 Levy Flight'''、[[渗透集群 Percolation Clusters]],'''自回避行走 Self - Avoiding walks'''、分形景观、布朗运动轨迹和布朗树(即通过模拟扩散受限聚集或反应受限聚集簇生成的树枝状分形)。
 
*随机分形-使用随机规则:例如:'''对莱维飞行 Levy Flight'''、[[渗透集群 Percolation Clusters]],'''自回避行走 Self - Avoiding walks'''、分形景观、布朗运动轨迹和布朗树(即通过模拟扩散受限聚集或反应受限聚集簇生成的树枝状分形)。
 
*有限细分规则:使用递归拓扑算法来细化分割,它们类似于细胞分裂的过程。在创建康托尔集和谢尔宾斯基地毯的迭代过中程运用到该规则,具体例子如重心细分。<ref name="vicsek">{{cite book |last=Vicsek |first=Tamás | title=Fractal growth phenomena | publisher=World Scientific | location=Singapore/New Jersey | year=1992 | isbn=978-981-02-0668-0|pages=31; 139–146 }}</ref>
 
*有限细分规则:使用递归拓扑算法来细化分割,它们类似于细胞分裂的过程。在创建康托尔集和谢尔宾斯基地毯的迭代过中程运用到该规则,具体例子如重心细分。<ref name="vicsek">{{cite book |last=Vicsek |first=Tamás | title=Fractal growth phenomena | publisher=World Scientific | location=Singapore/New Jersey | year=1992 | isbn=978-981-02-0668-0|pages=31; 139–146 }}</ref>
 +
    
==模拟分形==
 
==模拟分形==
第192行: 第197行:  
File:Brefeldia_maxima_plasmodium_on_wood.jpg|在木头上以分形方式生长的最大粘菌
 
File:Brefeldia_maxima_plasmodium_on_wood.jpg|在木头上以分形方式生长的最大粘菌
 
</gallery>
 
</gallery>
 +
    
==由分形而诞生的创造性作品==
 
==由分形而诞生的创造性作品==
第215行: 第221行:  
File:Apophysis-100303-104.jpg|分形火焰
 
File:Apophysis-100303-104.jpg|分形火焰
 
</gallery>
 
</gallery>
 +
    
==生理反应==
 
==生理反应==
    
人类似乎特别适合处理 D值(分形维数)在1.3到1.5之间的分形图案,<ref>{{cite book |chapter=Fractal Fluency: An Intimate Relationship Between the Brain and Processing of Fractal Stimuli |last=Taylor |first=Richard P. |pp=485–496 |title=The Fractal Geometry of the Brain |editor-last=Di Ieva |editor-first=Antonio |date=2016 |publisher=Springer |series=Springer Series in Computational Neuroscience |isbn=978-1-4939-3995-4}}</ref> 这是因为当人们看到此类分形图案时,来自生理上的识别压力往往会降低。<ref name="Taylor 2006">{{cite journal | last=Taylor | first=Richard P. | title=Reduction of Physiological Stress Using Fractal Art and Architecture | journal=Leonardo | volume=39 | issue=3 | year=2006 | pages=245–251 | doi=10.1162/leon.2006.39.3.245| url=https://zenodo.org/record/894740 }}</ref><ref>For further discussion of this effect, see {{cite journal | last=Taylor | first=Richard P. | last2=Spehar | first2=Branka | last3=Donkelaar | first3=Paul Van | last4=Hagerhall | first4=Caroline M. | title=Perceptual and Physiological Responses to Jackson Pollock's Fractals | journal=Frontiers in Human Neuroscience | volume=5 | pages=60 | year=2011 | doi=10.3389/fnhum.2011.00060| pmid=21734876 | pmc=3124832 }}</ref>
 
人类似乎特别适合处理 D值(分形维数)在1.3到1.5之间的分形图案,<ref>{{cite book |chapter=Fractal Fluency: An Intimate Relationship Between the Brain and Processing of Fractal Stimuli |last=Taylor |first=Richard P. |pp=485–496 |title=The Fractal Geometry of the Brain |editor-last=Di Ieva |editor-first=Antonio |date=2016 |publisher=Springer |series=Springer Series in Computational Neuroscience |isbn=978-1-4939-3995-4}}</ref> 这是因为当人们看到此类分形图案时,来自生理上的识别压力往往会降低。<ref name="Taylor 2006">{{cite journal | last=Taylor | first=Richard P. | title=Reduction of Physiological Stress Using Fractal Art and Architecture | journal=Leonardo | volume=39 | issue=3 | year=2006 | pages=245–251 | doi=10.1162/leon.2006.39.3.245| url=https://zenodo.org/record/894740 }}</ref><ref>For further discussion of this effect, see {{cite journal | last=Taylor | first=Richard P. | last2=Spehar | first2=Branka | last3=Donkelaar | first3=Paul Van | last4=Hagerhall | first4=Caroline M. | title=Perceptual and Physiological Responses to Jackson Pollock's Fractals | journal=Frontiers in Human Neuroscience | volume=5 | pages=60 | year=2011 | doi=10.3389/fnhum.2011.00060| pmid=21734876 | pmc=3124832 }}</ref>
 +
    
==在科技上的应用==
 
==在科技上的应用==
第261行: 第269行:  
*在纹理映射中GPU缓存一致性的Morton阶空间填充曲线<ref>{{cite web|title=GPU internals|url=http://fileadmin.cs.lth.se/cs/Personal/Michael_Doggett/pubs/doggett12-tc.pdf}}</ref><ref>{{cite web|title=sony patents|url=https://www.google.ch/patents/US20150287166?dq=morton+order+texture+swizzling}}</ref><ref>{{cite web|title = description of swizzled and hybrid tiled swizzled textures|url=https://news.ycombinator.com/item?id=2239173}}</ref> ,栅格化<ref>{{cite web | title=US8773422B1 - System, method, and computer program product for grouping linearly ordered primitives | website=Google Patents | date=December 4, 2007 | url=http://www.google.com/patents/US8773422 | access-date=December 28, 2019}}</ref><ref>{{cite web | title=US20110227921A1 - Processing of 3D computer graphics data on multiple shading engines | website=Google Patents | date=December 15, 2010 | url=http://www.google.ch/patents/US20110227921 | access-date=December 27, 2019}}</ref> 和湍流数据的索引<ref>{{cite web |url=http://turbulence.pha.jhu.edu |title=Johns Hopkins Turbulence Databases}}</ref><ref>{{cite journal|last=Li|first=Y.|first2=E.|last2=Perlman|first3=M.|last3=Wang|first4=y.|last4=Yang|first5=C.|last5=Meneveau|first6=R.|last6=Burns|first7=S.|last7=Chen|first8=A.|last8=Szalay|first9=G.|last9=Eyink|title=A Public Turbulence Database Cluster and Applications to Study Lagrangian Evolution of Velocity Increments in Turbulence|journal=Journal of Turbulence|date=2008|volume=9|pages=N31|doi=10.1080/14685240802376389|arxiv=0804.1703|bibcode=2008JTurb...9...31L}}</ref>。
 
*在纹理映射中GPU缓存一致性的Morton阶空间填充曲线<ref>{{cite web|title=GPU internals|url=http://fileadmin.cs.lth.se/cs/Personal/Michael_Doggett/pubs/doggett12-tc.pdf}}</ref><ref>{{cite web|title=sony patents|url=https://www.google.ch/patents/US20150287166?dq=morton+order+texture+swizzling}}</ref><ref>{{cite web|title = description of swizzled and hybrid tiled swizzled textures|url=https://news.ycombinator.com/item?id=2239173}}</ref> ,栅格化<ref>{{cite web | title=US8773422B1 - System, method, and computer program product for grouping linearly ordered primitives | website=Google Patents | date=December 4, 2007 | url=http://www.google.com/patents/US8773422 | access-date=December 28, 2019}}</ref><ref>{{cite web | title=US20110227921A1 - Processing of 3D computer graphics data on multiple shading engines | website=Google Patents | date=December 15, 2010 | url=http://www.google.ch/patents/US20110227921 | access-date=December 27, 2019}}</ref> 和湍流数据的索引<ref>{{cite web |url=http://turbulence.pha.jhu.edu |title=Johns Hopkins Turbulence Databases}}</ref><ref>{{cite journal|last=Li|first=Y.|first2=E.|last2=Perlman|first3=M.|last3=Wang|first4=y.|last4=Yang|first5=C.|last5=Meneveau|first6=R.|last6=Burns|first7=S.|last7=Chen|first8=A.|last8=Szalay|first9=G.|last9=Eyink|title=A Public Turbulence Database Cluster and Applications to Study Lagrangian Evolution of Velocity Increments in Turbulence|journal=Journal of Turbulence|date=2008|volume=9|pages=N31|doi=10.1080/14685240802376389|arxiv=0804.1703|bibcode=2008JTurb...9...31L}}</ref>。
 
{{div col end}}
 
{{div col end}}
 +
    
下面对于分形几何在电子技术方面的应用做一些说明:
 
下面对于分形几何在电子技术方面的应用做一些说明:
第289行: 第298行:     
当二维空间的分形被多次迭代时,分形的周长增加到无穷大,但面积绝不会超过某一阈值。 三维空间的分形与此相似,这样的分形可能有无限的表面积,但体积绝不会超过某一阈值。<ref>{{Cite web|url=http://www.fractal.org/Bewustzijns-Besturings-Model/Fractals-Useful-Beauty.htm|title=Introduction to Fractal Geometry|website=www.fractal.org|access-date=2017-04-11}}</ref>在选择电子发射体的结构和材料时,这样的特性可以用来最大限度地提高离子推进的效率。 如果操作正确,可使排放效率达到最高。<ref>{{Cite news|url=https://www.nasa.gov/centers/glenn/about/fs21grc.html|title=NASA – Ion Propulsion|last=DeFelice|first=David|date=August 18, 2015|work=NASA|access-date=2017-04-11|language=en}}</ref>
 
当二维空间的分形被多次迭代时,分形的周长增加到无穷大,但面积绝不会超过某一阈值。 三维空间的分形与此相似,这样的分形可能有无限的表面积,但体积绝不会超过某一阈值。<ref>{{Cite web|url=http://www.fractal.org/Bewustzijns-Besturings-Model/Fractals-Useful-Beauty.htm|title=Introduction to Fractal Geometry|website=www.fractal.org|access-date=2017-04-11}}</ref>在选择电子发射体的结构和材料时,这样的特性可以用来最大限度地提高离子推进的效率。 如果操作正确,可使排放效率达到最高。<ref>{{Cite news|url=https://www.nasa.gov/centers/glenn/about/fs21grc.html|title=NASA – Ion Propulsion|last=DeFelice|first=David|date=August 18, 2015|work=NASA|access-date=2017-04-11|language=en}}</ref>
 +
    
==著名学者简介==
 
==著名学者简介==
  −
      
[[File:曼德博.jpg|400px|thumb|up=3|伯努·瓦曼德布洛特 Benoît B. Mandelbrot|center]]
 
[[File:曼德博.jpg|400px|thumb|up=3|伯努·瓦曼德布洛特 Benoît B. Mandelbrot|center]]
第313行: 第321行:  
[[File:豪斯多夫.jpg|300px|thumb|upright=3|费利克斯·豪斯多夫 Felix Hausdorff|center]]
 
[[File:豪斯多夫.jpg|300px|thumb|upright=3|费利克斯·豪斯多夫 Felix Hausdorff|center]]
 
'''费利克斯·豪斯多夫 Felix Hausdorff'''是德国数学家,他是拓扑学的创始人之一,他定义和研究偏序集、豪斯多夫空间和豪斯多夫维,证明Hausdorff maximality theorem。提出了豪斯多夫维数来计算分形维数。
 
'''费利克斯·豪斯多夫 Felix Hausdorff'''是德国数学家,他是拓扑学的创始人之一,他定义和研究偏序集、豪斯多夫空间和豪斯多夫维,证明Hausdorff maximality theorem。提出了豪斯多夫维数来计算分形维数。
 +
    
==进一步阅读==
 
==进一步阅读==
第356行: 第365行:  
==参考文献==
 
==参考文献==
 
<references/>
 
<references/>
 +
    
==相关连接==
 
==相关连接==
 
*[http://www-31.ibm.com/ibm/cn/ibm100/icons/fractal/index.shtml  IBM分形几何 相关概述]
 
*[http://www-31.ibm.com/ibm/cn/ibm100/icons/fractal/index.shtml  IBM分形几何 相关概述]
 
*[https://mp.weixin.qq.com/s/WEpD1e_jyJXHXteal1NCgw  摘自集智俱乐部 分形——故事之外]
 
*[https://mp.weixin.qq.com/s/WEpD1e_jyJXHXteal1NCgw  摘自集智俱乐部 分形——故事之外]
 +
    
==编者推荐==
 
==编者推荐==
7,129

个编辑

导航菜单