更改

跳到导航 跳到搜索
添加9字节 、 2024年9月7日 (星期六)
第288行: 第288行:  
综上,NIS+是可以直接从fMRI时间序列数据揭示出大脑在不同尺度的动力学,并发现[[因果涌现]]主要发生在哪个尺度;当被试集中看视频的时候,大脑活动可以被一个维度的宏观信号所概括,这一维度主要代表的是视觉区域的活动状态,大脑发生了非常明显的[[因果涌现]]现象;而在静息态下,被试大脑虽然也发生了[[因果涌现]]现象,但强度明显低于前者。大脑的主要活动则相对第一组更复杂,因为它不能简单地被一个维度的宏观态所概括,而是集中在一个3~7维的介观尺度上。
 
综上,NIS+是可以直接从fMRI时间序列数据揭示出大脑在不同尺度的动力学,并发现[[因果涌现]]主要发生在哪个尺度;当被试集中看视频的时候,大脑活动可以被一个维度的宏观信号所概括,这一维度主要代表的是视觉区域的活动状态,大脑发生了非常明显的[[因果涌现]]现象;而在静息态下,被试大脑虽然也发生了[[因果涌现]]现象,但强度明显低于前者。大脑的主要活动则相对第一组更复杂,因为它不能简单地被一个维度的宏观态所概括,而是集中在一个3~7维的介观尺度上。
   −
== 数学推导 ==
+
== 关键定理与证明 ==
 
式{{EquationNote|1}}中,数学形式是一个泛函问题,无法直接进行优化,作者将通过计算并优化变分下界来解决泛函优化问题。同时,在NIS+框架中,作者使用了编码器将p维的输入数据进行粗粒化,得到q维的宏观数据,下面编码器的通用逼近定理将证明编码器的可以近似任意复杂的粗粒化函数。
 
式{{EquationNote|1}}中,数学形式是一个泛函问题,无法直接进行优化,作者将通过计算并优化变分下界来解决泛函优化问题。同时,在NIS+框架中,作者使用了编码器将p维的输入数据进行粗粒化,得到q维的宏观数据,下面编码器的通用逼近定理将证明编码器的可以近似任意复杂的粗粒化函数。
  
786

个编辑

导航菜单