更改

跳到导航 跳到搜索
删除583字节 、 2024年10月16日 (星期三)
第114行: 第114行:  
这个概念最早出现在Kemeny, Snell在1969年的Finite Markov Chains<ref name=":3">Kemeny, John G., and J. Laurie Snell. ''Finite markov chains''. Vol. 26. Princeton, NJ: van Nostrand, 1969. https://www.math.pku.edu.cn/teachers/yaoy/Fall2011/Kemeny-Snell_Chapter6.3-4.pdf</ref>中。
 
这个概念最早出现在Kemeny, Snell在1969年的Finite Markov Chains<ref name=":3">Kemeny, John G., and J. Laurie Snell. ''Finite markov chains''. Vol. 26. Princeton, NJ: van Nostrand, 1969. https://www.math.pku.edu.cn/teachers/yaoy/Fall2011/Kemeny-Snell_Chapter6.3-4.pdf</ref>中。
   −
首先定义<math>f_t</math>表示系统在<math>t</math>时刻的微观状态,微观状态空间为<math>S=\{s_1, s_2, ... ,s_n\}</math>。
+
首先定义<math>s^{(t)}</math>表示系统在<math>t</math>时刻的微观状态,微观状态空间为<math>S=\{s_1, s_2, ... ,s_n\}</math>。
   −
给定一个state partition <math>A=\{A_1, A_2, ... ,A_r\}</math>,也可以把其理解为宏观的状态空间,<math>S \rightarrow A</math>是一个离散的多对一的映射关系(hard partition)
+
给定一个state partition <math>A=\{A_1, A_2, ... ,A_r\}</math>,也可以把其理解为宏观的状态空间,<math>S \rightarrow A</math>是一个离散的多对一的映射关系(hard partition),定义<math>A^{(t)}</math>表示系统在<math>t</math>时刻的宏观状态。
    
对于一个给定的state partition <math>A</math>,当下列公式对任何微观初始状态(starting vector) <math> \pi </math> 都保持一致时,<math>A</math>是一个lumpable partition:
 
对于一个给定的state partition <math>A</math>,当下列公式对任何微观初始状态(starting vector) <math> \pi </math> 都保持一致时,<math>A</math>是一个lumpable partition:
第123行: 第123行:  
<math>
 
<math>
 
\begin{aligned}
 
\begin{aligned}
&Pr_{\pi}[f_0 \in A_i] \\
+
&Pr_{\pi}[s^{(0)} \in A_i] \\
&Pr_{\pi}[f_1 \in A_j | f_0 \in A_i] \\
+
&Pr_{\pi}[s^{(1)} \in A_j | s^{(0)} \in A_i] \\
&Pr_{\pi}[f_t \in A_m |f_{t-1} \in A_k, ... ,  f_1 \in A_j,  f_0 \in A_i] = Pr_{\pi}[f_t \in A_m |f_{t-1} \in A_k]
+
&Pr_{\pi}[s^{(t)} \in A_m | s^{(t-1)} \in A_k, ... ,  s^{(1)} \in A_j,  s^{(0)} \in A_i] = Pr_{\pi}[s^{(t)} \in A_m | s^{(t-1)} \in A_k]
 
\end{aligned}
 
\end{aligned}
 
</math>
 
</math>
 
|{{EquationRef|3}}}}
 
|{{EquationRef|3}}}}
   −
字面意思上,这三个公式表达的是:(1) 在<math>t</math>时刻的<math>f_t</math>等于<math>s_i</math>并属于<math>A_k</math>的概率;(2) 当<math>t</math>时刻的<math>f_t</math>等于<math>s_i</math>并属于<math>A_k</math>时,下一时刻的<math>f_{t+1}</math>等于<math>s_j</math>并属于<math>A_m</math>的概率;(3)马尔可夫性。
+
这两个公式实际上描述了以下内容:
 
  −
这里强调考虑所有的初始状态<math>\pi</math>的意思是:(1) 任意时刻任意微观状态<math>s_i</math>属于<math>A_k</math>的概率都是一样的;(2) 当任意时刻任意<math>s_i</math>属于<math>A_k</math>时,下一时刻的微观状态<math>s_j = P s_i</math>属于<math>A_m</math>的概率也要求是一样的。
  −
 
  −
 
  −
这三个公式实际上描述了以下内容:
      
系统在时间<math>t</math>处于某个特定微观状态<math>s_i</math>,并且这个状态属于某个宏观状态<math>A_k</math>的概率;
 
系统在时间<math>t</math>处于某个特定微观状态<math>s_i</math>,并且这个状态属于某个宏观状态<math>A_k</math>的概率;
第151行: 第146行:  
公式首先描述了系统的宏观状态的转移概率<math>Pr_{\pi}[A_m | A_k]</math>,整体可以看作是宏观动力学(路径1)。
 
公式首先描述了系统的宏观状态的转移概率<math>Pr_{\pi}[A_m | A_k]</math>,整体可以看作是宏观动力学(路径1)。
   −
同时,整个表达式也包含了路径2的元素,其中<math>\pi</math>为微观初始状态,<math>\{f_0,\ f_1,\ ...\ ,\ f_t\}</math>为微观动力学(微观动力学的演化过程在这里被省略了),而<math>f_t \in A_m</math>代表了从微观状态到宏观状态的聚类过程。
+
同时,整个表达式也包含了路径2的元素,其中<math>\pi</math>为微观初始状态,<math>\{s^{(0)},\ s^{(1)},\ ...\ ,\ s^{(t)}\}</math>为微观动力学(微观动力学的演化过程在这里被省略了),而<math>s^{(t)} \in A_m</math>代表了从微观状态到宏观状态的聚类过程。
     
97

个编辑

导航菜单