我们把<math>\mathbf{M}</math>的k个最大奇异值之和称为<math>\mathbf{M}</math>的Ky Fan k-范数,这是一种[[矩阵范数 matrix norm]]。
+
我们把<math>\mathbf{M}</math>的k个最大奇异值之和称为<math>\mathbf{M}</math>的Ky Fan k-范数,这是一种矩阵范数(matrix nor)。
−
Ky Fan范数中的第一个,即Ky Fan 1-范数,等同于<math>\mathbf{M}</math>作为线性算子相对于<math>K^m</math>和<math>K^n</math>的欧几里得范数的[[算子范数 operator norm]]。换言之,Ky Fan 1-范数就是标准<math>\ell^2</math>欧几里得内积诱导的算子范数。我们很容易就能验证Ky Fan 1-范数和奇异值之间的关系。一般来说,对于(可能是无限维)希尔伯特空间上的有界算子<math>\mathbf{M}</math>,我们有:
+
Ky Fan范数中的第一个,即Ky Fan 1-范数,等同于<math>\mathbf{M}</math>作为线性算子相对于<math>K^m</math>和<math>K^n</math>的欧几里得范数的算子范数(operator norm)。换言之,Ky Fan 1-范数就是标准<math>\ell^2</math>欧几里得内积诱导的算子范数。我们很容易就能验证Ky Fan 1-范数和奇异值之间的关系。一般来说,对于(可能是无限维)希尔伯特空间上的有界算子<math>\mathbf{M}</math>,我们有:
Ky Fan范数中的最后一个,即所有奇异值的和,我们称之为[[迹范数 trace norm]](也叫核范数),定义为<math>\|\mathbf{M}\| = \operatorname{Tr}(\mathbf{M}^*\mathbf{M})^{1/2}</math>(<math>\mathbf{M}^*\mathbf{M}</math>的特征值是奇异值的平方)。
+
Ky Fan范数中的最后一个,即所有奇异值的和,我们称之为迹范数(trace norm)(也叫核范数),定义为<math>\|\mathbf{M}\| = \operatorname{Tr}(\mathbf{M}^*\mathbf{M})^{1/2}</math>(<math>\mathbf{M}^*\mathbf{M}</math>的特征值是奇异值的平方)。