第二步可用QR算法的变体完成,该变体由Golub & Kahan(1965)<ref>{{cite journal |last1=Golub |first1=Gene H. |last2=Kahan |first2=William |title=Calculating the singular values and pseudo-inverse of a matrix |journal=Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis |volume=2 |issue=2 |pages=205–224 |year=1965 |doi=10.1137/0702016 |jstor=2949777 |bibcode=1965SJNA....2..205G}}</ref>首次描述。LAPACK子程序DBDSQR<ref>{{cite web |title=Netlib.org |url=http://www.netlib.org/ }}</ref>实现了这种迭代方法,并针对奇异值非常小的情况进行了改进(Demmel & Kahan 1990)<ref>{{cite journal |last1=Demmel |first1=James |last2=Kahan |first2=William |title=Accurate singular values of bidiagonal matrices |journal=SIAM Journal on Scientific and Statistical Computing |volume=11 |issue=5 |pages=873–912 |year=1990 |doi=10.1137/0911052 |citeseerx=10.1.1.48.3740}}</ref>。结合使用Householder反射的第一步和适当情况下的QR分解,构成了计算奇异值分解的DGESVD<ref>{{cite web |title=Netlib.org |url=http://www.netlib.org/ }}</ref>例程。 | 第二步可用QR算法的变体完成,该变体由Golub & Kahan(1965)<ref>{{cite journal |last1=Golub |first1=Gene H. |last2=Kahan |first2=William |title=Calculating the singular values and pseudo-inverse of a matrix |journal=Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis |volume=2 |issue=2 |pages=205–224 |year=1965 |doi=10.1137/0702016 |jstor=2949777 |bibcode=1965SJNA....2..205G}}</ref>首次描述。LAPACK子程序DBDSQR<ref>{{cite web |title=Netlib.org |url=http://www.netlib.org/ }}</ref>实现了这种迭代方法,并针对奇异值非常小的情况进行了改进(Demmel & Kahan 1990)<ref>{{cite journal |last1=Demmel |first1=James |last2=Kahan |first2=William |title=Accurate singular values of bidiagonal matrices |journal=SIAM Journal on Scientific and Statistical Computing |volume=11 |issue=5 |pages=873–912 |year=1990 |doi=10.1137/0911052 |citeseerx=10.1.1.48.3740}}</ref>。结合使用Householder反射的第一步和适当情况下的QR分解,构成了计算奇异值分解的DGESVD<ref>{{cite web |title=Netlib.org |url=http://www.netlib.org/ }}</ref>例程。 |