更改

跳到导航 跳到搜索
添加141字节 、 2020年4月19日 (日) 16:49
第22行: 第22行:       −
1913年,恩斯特·泽梅罗  Ernst Zermelo 发表了'''《关于集合论在国际象棋博弈理论中的应用》 On a Application of Set Theory to the Theory of the Game of the Chess''' ,证明了最优的国际象棋策略是严格确定的。这为更一般的定理铺平了道路。
+
1913年,恩斯特·泽梅罗  Ernst Zermelo 发表了'''《关于集合论在国际象棋博弈理论中的应用  On a Application of Set Theory to the Theory of the Game of the Chess》''' ,证明了最优的国际象棋策略是严格确定的。这为更一般的定理铺平了道路。
      −
1938年,丹麦数学经济学家弗雷德里克·祖恩 Frederik Zeuthen 利用'''布劳威尔不动点定理  Brouwer's fixed point theorem''' ,证明了数学模型具有获胜策略。在波莱尔  Emile Borel  1938年的著作'''《哈萨德的应用》 Applications aux Jeux de Hasard''' 和更早的笔记中,Borel 证明了当收益矩阵是对称时, 二人零和矩阵对策的极大极小定理,并提供了一个非平凡无限对策的解(在英语中称为Blotto博弈)。Borel推测有限二人零和博弈中不存在混合策略均衡,这一猜想被[[von Neumann]]  证明是错误的。
+
1938年,丹麦数学经济学家弗雷德里克·祖恩 Frederik Zeuthen 利用'''布劳威尔不动点定理  Brouwer's fixed point theorem''' ,证明了数学模型具有获胜策略。在波莱尔  Emile Borel  1938年的著作'''《哈萨德的应用》 Applications aux Jeux de Hasard''' 和更早的笔记中,Borel 证明了当收益矩阵是对称时, 二人零和矩阵对策的极大极小定理,并提供了一个非平凡无限对策的解(在英语中称为Blotto博弈)。Borel推测有限二人零和博弈中不存在混合策略均衡,这一猜想被[[约翰·冯·诺依曼 John von Neumann]]  证明是错误的。
      −
直到1928年[[von Neumann]] 发表了关于战略博弈论的论文,博弈论才真正成为一个独立的研究领域。[[von Neumann]]的原始证明采用了布劳威尔关于连续映射到紧凸集的'''布劳威尔不动点定理 Brouwer fixed-point theorem'''。该种方法成为研究博弈论和数理经济学的标准方法。随后,他在1944年与奥斯卡•摩根斯坦 Oskar Morgenstern 合著了'''《博弈论与经济行为》 Theory of Games and Economic Behavior''' 一书。这本书的第二版提供了一个不言自明的效用理论,它将丹尼尔·伯努利(Daniel Bernoulli)的旧的效用理论(与金钱相关)转变为一个独立的学科。[[von Neumann]]在博弈论方面的工作突出反映在这本1944年出版的书中。这一基础工作包含了寻找二人零和博弈相互一致解的方法。随后的工作主要集中在合作博弈论上,假设个人之间可以遵守关于采用正确策略的协议,去分析个人群体的最优策略。
+
直到1928年[[约翰·冯·诺依曼 John von Neumannn]] 发表了关于战略博弈论的论文,博弈论才真正成为一个独立的研究领域。[[约翰·冯·诺依曼 John von Neumann]]的原始证明采用了布劳威尔关于连续映射到紧凸集的'''布劳威尔不动点定理 Brouwer fixed-point theorem'''。该种方法成为研究博弈论和数理经济学的标准方法。随后,他在1944年与奥斯卡•摩根斯坦 Oskar Morgenstern 合著了'''《博弈论与经济行为》 Theory of Games and Economic Behavior''' 一书。这本书的第二版提供了一个不言自明的效用理论,它将丹尼尔·伯努利 Daniel Bernoulli 的旧的效用理论(与金钱相关)转变为一个独立的学科。[[约翰·冯·诺依曼 John von Neumann]]在博弈论方面的工作突出反映在这本1944年出版的书中。这一基础工作包含了寻找二人零和博弈相互一致解的方法。随后的工作主要集中在合作博弈论上,假设个人之间可以遵守关于采用正确策略的协议,去分析个人群体的最优策略。
      第34行: 第34行:       −
大约在同一时间,小约翰·福布斯·纳什 John Forbes Nash 提出了一种球员策略相互一致性的标准,称为纳什均衡,适用于比[[von Neumann]] 和 Morgenstern提出的标准更广泛的博弈。John Forbes Nash 是美国数学家,前马萨诸塞理工学院摩尔荣誉讲师,主要研究博弈论、微分几何学和偏微分方程。晚年成为普林斯顿大学的资深研究数学家。1950年, John Forbes Nash 获得美国普林斯顿大学的博士学位,他在仅仅28页的博士论文中提出了一个重要概念,成为博弈论中一项重要突破。这个概念就是前文提到的“纳什均衡”。它被广泛运用在经济学、计算机科学、演化生物学、人工智能、会计学、政策和军事理论等方面。John Forbes Nash 最重要的数学成就是在微分几何和偏微分方程的领域,特别是黎曼流形等距嵌入到欧氏空间的一系列结果。因为在非线性偏微分方程上的贡献,他与路易·尼伦伯格 Louis nierenberg 共同获得了2015年阿贝尔奖 Abel Prize。著名几何学家米哈伊尔·格罗默夫  Mikhail Gromov 这样评价 John Forbes Nash 的工作:“他有巨大的数学分析能力和几何洞察力……他的几何工作,不论是他的结果、技术、使用的想法,都与任何人原先预期的相反……他在几何学所做的,从我看来,比起他在经济学所做的无可比拟地伟大得多,相差很多个数量级。”在1959年之后,由于出现精神上的症状,他的研究生涯曾经中断,在1959年及1961年两度进入医院疗养,被诊断为思觉失调症。John Forbes Nash 拒绝接受精神药物治疗。在1970年后,症状逐渐好转,因此再度回到学术研究工作。他这段时间的经历,由西尔维娅·娜萨  Sylvia Nasar 写成传记,并翻拍为电影《美丽心灵》,使得他的事迹广为人知。 John Forbes Nash 证明了纳什均衡在'''n'''人有限博弈中的普遍存在性,从而开创了与[[von Neumann]]和Morgenstern 框架路线均完全不同的“'''非合作博弈 Non-cooperative Game'''”理论。由此推出非合作博弈都存在一个混合策略的纳什均衡点。
+
大约在同一时间,小约翰·福布斯·纳什 John Forbes Nash 提出了一种球员策略相互一致性的标准,称为纳什均衡,适用于比[[von Neumann]] 和 Morgenstern提出的标准更广泛的博弈。John Forbes Nash 是美国数学家,前马萨诸塞理工学院摩尔荣誉讲师,主要研究博弈论、微分几何学和偏微分方程。晚年成为普林斯顿大学的资深研究数学家。1950年, John Forbes Nash 获得美国普林斯顿大学的博士学位,他在仅仅28页的博士论文中提出了一个重要概念,成为博弈论中一项重要突破。这个概念就是前文提到的“纳什均衡”。它被广泛运用在经济学、计算机科学、演化生物学、人工智能、会计学、政策和军事理论等方面。John Forbes Nash 最重要的数学成就是在微分几何和偏微分方程的领域,特别是黎曼流形等距嵌入到欧氏空间的一系列结果。因为在非线性偏微分方程上的贡献,他与路易·尼伦伯格 Louis nierenberg 共同获得了2015年阿贝尔奖 Abel Prize。著名几何学家米哈伊尔·格罗默夫  Mikhail Gromov 这样评价 John Forbes Nash 的工作:“他有巨大的数学分析能力和几何洞察力……他的几何工作,不论是他的结果、技术、使用的想法,都与任何人原先预期的相反……他在几何学所做的,从我看来,比起他在经济学所做的无可比拟地伟大得多,相差很多个数量级。”在1959年之后,由于出现精神上的症状,他的研究生涯曾经中断,在1959年及1961年两度进入医院疗养,被诊断为思觉失调症。John Forbes Nash 拒绝接受精神药物治疗。在1970年后,症状逐渐好转,因此再度回到学术研究工作。他这段时间的经历,由西尔维娅·娜萨  Sylvia Nasar 写成传记,并翻拍为电影《美丽心灵》,使得他的事迹广为人知。 John Forbes Nash 证明了纳什均衡在'''n'''人有限博弈中的普遍存在性,从而开创了与[[约翰·冯·诺依曼 John von Neumann]]和Morgenstern 框架路线均完全不同的“'''非合作博弈 Non-cooperative Game'''”理论。由此推出非合作博弈都存在一个混合策略的纳什均衡点。
      −
博弈论在20世纪50年代经历了一场运动,'''广义形式游戏 The extensive form game'''、'''虚拟行动 Fictitious play''' 、'''重复博弈  Repeated games''' 、'''Shapley值  Shapley value'''等核心概念在此期间得到发展。20世纪50年代,博弈论首次应用于哲学和政治学。
+
博弈论在20世纪50年代经历了一场运动,'''广义形式游戏 The extensive form game'''、'''虚拟行动 Fictitious play''' 、'''重复博弈  Repeated games''' 、'''Shapley值  Shapley value'''等核心概念在此期间得到发展。
    +
20世纪50年代,博弈论首次应用于哲学和政治学。
    
1979年,罗伯特•阿克塞尔罗德  Robert Axelrod 试图以玩家身份设置电脑程序,结果在他们之间的锦标赛中,他发现获胜者往往是一个简单的“以牙还牙”程序,在第一步中进行合作,然后在接下来的步骤中,按照对手在上一步中的动作进行自己下一步的动作。这一事实被广泛用来解释进化生物学和社会科学中的合作现象。
 
1979年,罗伯特•阿克塞尔罗德  Robert Axelrod 试图以玩家身份设置电脑程序,结果在他们之间的锦标赛中,他发现获胜者往往是一个简单的“以牙还牙”程序,在第一步中进行合作,然后在接下来的步骤中,按照对手在上一步中的动作进行自己下一步的动作。这一事实被广泛用来解释进化生物学和社会科学中的合作现象。
第45行: 第46行:  
===相关成果===
 
===相关成果===
   −
1965年,泽尔腾 Reinhard Selten 引入了'''子博弈完美均衡 Subgame perfect equilibria''' 的解决方案,进一步完善了纳什平衡。 后来,他还介绍了'''颤抖手完美均衡 Trembling hand perfection''' 。 1994年,John Nash 和其他两位博弈论学家约翰·C·海萨尼 John C. Harsany 和莱因哈德·泽尔腾 Reinhard Selten 由于对经济博弈论的贡献共同获得了诺贝尔经济学奖。其中,John nash 21岁时关于“纳什均衡”的博士毕业论文为他获得诺贝尔学奖奠定了基础;Harsanyi 因为他对不完全信息博弈(即所谓的贝叶斯博弈)进行了高度创新的分析而为人们所熟知。他还为博弈论和经济推理在政治和道德哲学(特别是功利主义道德)中的使用以及为均衡选择的研究做出了重要贡献;Reinhard Selten 因在“非合作博弈理论中开创性的均衡分析”方面的杰出贡献而荣获诺贝尔经济学奖。
+
1965年,泽尔腾 Reinhard Selten 引入了'''子博弈完美均衡 Subgame perfect equilibria''' 的解决方案,进一步完善了纳什平衡。 后来,他还介绍了'''颤抖手完美均衡 Trembling hand perfection''' 。 1994年,John Nash 和其他两位博弈论学家约翰·C·海萨尼 John C. Harsany 和莱因哈德·泽尔腾 Reinhard Selten 由于对经济博弈论的贡献共同获得了诺贝尔经济学奖。其中,John nash 21岁时关于“纳什均衡”的博士毕业论文为他获得诺贝尔学奖奠定了基础;Harsanyi 因为他对不完全信息博弈(即所谓的贝叶斯博弈)进行了高度创新的分析而为人们所熟知。他还为博弈论和经济推理在政治和道德哲学(特别是功利主义道德)中的使用以及为均衡选择的研究做出了重要贡献;Reinhard Selten因在“非合作博弈理论中开创性的均衡分析”方面的杰出贡献而荣获诺贝尔经济学奖。
      第57行: 第58行:       −
2012年,阿尔文• E •罗斯 Alvin E. Roth 和劳埃德•沙普利  Lloyd S. Shapley 因“稳定配置理论和市场设计实践”而获得诺贝尔经济学奖。 2014年,让 · 梯若尔Jean Tirole 因对市场力量和监管的分析而荣获诺贝尔经济学奖 。
+
2012年,阿尔文• E •罗斯 Alvin E. Roth 和劳埃德•沙普利  Lloyd S. Shapley 因“稳定配置理论和市场设计实践”而获得诺贝尔经济学奖。 2014年,让•梯若尔Jean Tirole 因对市场力量和监管的分析而荣获诺贝尔经济学奖 。
    
==博弈类型==
 
==博弈类型==
1,526

个编辑

导航菜单