这里,[math]X[/math]是因变量,[math]Y[/math]是果变量,[math]P[/math]表示[math]X[/math]到[math]Y[/math]的因果机制。当[math]X, Y[/math]均为离散状态分布的情境下,[math]P[/math]为概率转移矩阵,[math]p_{ij}\equiv Pr(Y=j|X=i)[/math]。[math]do(X\sim U(\mathcal{X}))[/math]代表对[math]X[/math]实施[[do干预]](或称[[do操作]],英文是do-operator),使其服从[math]\mathcal{X}[/math]上的均匀分布[math]U(\mathcal{X})[/math],也即是[[最大熵分布]]。在这一干预下,因果机制P保持不变。EI指标度量的是经过do干预后的因变量X与果变量Y之间的互信息。 | 这里,[math]X[/math]是因变量,[math]Y[/math]是果变量,[math]P[/math]表示[math]X[/math]到[math]Y[/math]的因果机制。当[math]X, Y[/math]均为离散状态分布的情境下,[math]P[/math]为概率转移矩阵,[math]p_{ij}\equiv Pr(Y=j|X=i)[/math]。[math]do(X\sim U(\mathcal{X}))[/math]代表对[math]X[/math]实施[[do干预]](或称[[do操作]],英文是do-operator),使其服从[math]\mathcal{X}[/math]上的均匀分布[math]U(\mathcal{X})[/math],也即是[[最大熵分布]]。在这一干预下,因果机制P保持不变。EI指标度量的是经过do干预后的因变量X与果变量Y之间的互信息。 |