更改

跳到导航 跳到搜索
第91行: 第91行:  
In 2013, Hoel et al. [1][2] proposed the causal emergence theory. The following figure is an abstract framework for this theory. The horizontal axis represents time and the vertical axis represents scale. This framework can be regarded as a description of the same dynamical system on both microscopic and macroscopic scales. Among them, [math]f_m[/math] represents microscopic dynamics, [math]f_M[/math] represents macroscopic dynamics, and the two are connected by a coarse-graining function [math]\phi[/math]. In a discrete-state Markov dynamical system, both [math]f_m[/math] and [math]f_M[/math] are Markov chains. By performing coarse-graining of the Markov chain on [math]f_m[/math], [math]f_M[/math] can be obtained. <math> EI </math> is a measure of effective information. Since the microscopic state may have greater randomness, which leads to relatively weak causality of microscopic dynamics, by performing reasonable coarse-graining on the microscopic state at each moment, it is possible to obtain a macroscopic state with stronger causality. The so-called causal emergence refers to the phenomenon that when we perform coarse-graining on the microscopic state, the effective information of macroscopic dynamics will increase, and the difference in effective information between the macroscopic state and the microscopic state is defined as the intensity of causal emergence.
 
In 2013, Hoel et al. [1][2] proposed the causal emergence theory. The following figure is an abstract framework for this theory. The horizontal axis represents time and the vertical axis represents scale. This framework can be regarded as a description of the same dynamical system on both microscopic and macroscopic scales. Among them, [math]f_m[/math] represents microscopic dynamics, [math]f_M[/math] represents macroscopic dynamics, and the two are connected by a coarse-graining function [math]\phi[/math]. In a discrete-state Markov dynamical system, both [math]f_m[/math] and [math]f_M[/math] are Markov chains. By performing coarse-graining of the Markov chain on [math]f_m[/math], [math]f_M[/math] can be obtained. <math> EI </math> is a measure of effective information. Since the microscopic state may have greater randomness, which leads to relatively weak causality of microscopic dynamics, by performing reasonable coarse-graining on the microscopic state at each moment, it is possible to obtain a macroscopic state with stronger causality. The so-called causal emergence refers to the phenomenon that when we perform coarse-graining on the microscopic state, the effective information of macroscopic dynamics will increase, and the difference in effective information between the macroscopic state and the microscopic state is defined as the intensity of causal emergence.
 
[[文件:因果涌现理论框架.png|无|缩略图]]
 
[[文件:因果涌现理论框架.png|无|缩略图]]
Effective Information
+
 
 +
==== Effective Information ====
 
Effective Information (<math> EI </math>) was first proposed by Tononi et al. in the study of integrated information theory [41]. In causal emergence research, Erik Hoel and others use this causal effect measure index to quantify the strength of causality of a causal mechanism.
 
Effective Information (<math> EI </math>) was first proposed by Tononi et al. in the study of integrated information theory [41]. In causal emergence research, Erik Hoel and others use this causal effect measure index to quantify the strength of causality of a causal mechanism.
  
67

个编辑

导航菜单