− | The author gives four specific examples of Markov chains. The state transition matrix of this Markov chain is shown in the figure. We can compare the <math>EI</math> and approximate dynamical reversibility (the <math>\Gamma</math> in the figure, that is, <math>\Gamma_{\alpha = 1}</math>) of this Markov chain. Comparing figures a and b, we find that for different state transition matrices, when <math>EI</math> decreases, <math>\Gamma</math> also decreases simultaneously. Further, figures c and d are comparisons of the effects before and after coarse-graining. Among them, figure d is the coarse-graining of the state transition matrix of figure c (merging the first three states into a macroscopic state). Since the macroscopic state transition matrix in figure d is a deterministic system, the normalized <math>EI</math>, <math>eff\equiv EI/\log N</math> and the normalized [math]\Gamma[/math>: <math>\gamma\equiv \Gamma/N</math> all reach the maximum value of 1. | + | The author gives four specific examples of Markov chains. The state transition matrix of this Markov chain is shown in the figure. We can compare the <math>EI</math> and approximate dynamical reversibility (the <math>\Gamma</math> in the figure, that is, <math>\Gamma_{\alpha = 1}</math>) of this Markov chain. Comparing figures a and b, we find that for different state transition matrices, when <math>EI</math> decreases, <math>\Gamma</math> also decreases simultaneously. Further, figures c and d are comparisons of the effects before and after coarse-graining. Among them, figure d is the coarse-graining of the state transition matrix of figure c (merging the first three states into a macroscopic state). Since the macroscopic state transition matrix in figure d is a deterministic system, the normalized <math>EI</math>, <math>eff\equiv EI/\log N</math> and the normalized [math]\Gamma[/math]: <math>\gamma\equiv \Gamma/N</math> all reach the maximum value of 1. |