更改

跳到导航 跳到搜索
第272行: 第272行:  
'''粗粒化映射''':从图C可以看出,这个概率转移矩阵非常复杂,但同时矩阵也有一些规律可循,比如前12行和后4行的模式差异较大,前12行中每4行的模式都是重复的。因此思考是否可以提炼出其中的规律,更加高效地表达系统间的状态转移模式。首先可以看系统内是有分组机制,四个元素被分为了两组,每组都接受另一组元素的输入且响应机制相同,同组元素的状态之间不会互相影响,因此同组元素之间是独立等价的,可以被映射或归类为同一个宏观元素。微观系统[math]S_m = \{ABCD\}[/math]可以被粗粒化为有两个元素[math]{α, β}[/math]的宏观系统[math]S_M[/math]。考虑微观状态的转移机制(图A右侧),输入值00,01和10决定状态的规则相同,输入值11对应另一种,因此每个宏观元素状态可以映射为{"off" ,"on"}两种(图D)。
 
'''粗粒化映射''':从图C可以看出,这个概率转移矩阵非常复杂,但同时矩阵也有一些规律可循,比如前12行和后4行的模式差异较大,前12行中每4行的模式都是重复的。因此思考是否可以提炼出其中的规律,更加高效地表达系统间的状态转移模式。首先可以看系统内是有分组机制,四个元素被分为了两组,每组都接受另一组元素的输入且响应机制相同,同组元素的状态之间不会互相影响,因此同组元素之间是独立等价的,可以被映射或归类为同一个宏观元素。微观系统[math]S_m = \{ABCD\}[/math]可以被粗粒化为有两个元素[math]{α, β}[/math]的宏观系统[math]S_M[/math]。考虑微观状态的转移机制(图A右侧),输入值00,01和10决定状态的规则相同,输入值11对应另一种,因此每个宏观元素状态可以映射为{"off" ,"on"}两种(图D)。
   −
[[文件:FigureD.png|无框|200x200像素]]
+
[[文件:FigureD.png|无框|100x100像素]]
    
'''宏观尺度''':宏观系统现在由2个元素组成,每个元素由2个状态,所以宏观系统整体共有[math]2^2=4[/math]个可能的状态。将系统以等概率设置为所有可能的宏观状态,根据宏观的转移规则,可以得到 4 × 4 的[math]S_M[/math] 概率转移矩阵(图E)。由图E可见,矩阵规模减小,但是状态间的转移规律更明确。宏观尺度下[math]EI(S_M) = Det(S_M) - Deg(S_M) = 1.56 - 0.01 = 1.55 \text{ bits}[/math],[math]Eff(S_M) = 0.78[/math],高于微观尺度的[math]EI(S_m) = 1.15 \text{ bits}[/math]。因此,因果涌现度量[math]CE(S) = EI(S_M) - EI(S_m) = 0.40 \text{ bits}[/math],宏观的因果性优于微观,因果涌现发生。
 
'''宏观尺度''':宏观系统现在由2个元素组成,每个元素由2个状态,所以宏观系统整体共有[math]2^2=4[/math]个可能的状态。将系统以等概率设置为所有可能的宏观状态,根据宏观的转移规则,可以得到 4 × 4 的[math]S_M[/math] 概率转移矩阵(图E)。由图E可见,矩阵规模减小,但是状态间的转移规律更明确。宏观尺度下[math]EI(S_M) = Det(S_M) - Deg(S_M) = 1.56 - 0.01 = 1.55 \text{ bits}[/math],[math]Eff(S_M) = 0.78[/math],高于微观尺度的[math]EI(S_m) = 1.15 \text{ bits}[/math]。因此,因果涌现度量[math]CE(S) = EI(S_M) - EI(S_m) = 0.40 \text{ bits}[/math],宏观的因果性优于微观,因果涌现发生。
2,435

个编辑

导航菜单