| In [[mathematics]], a '''hypergraph''' is a generalization of a [[Graph (discrete mathematics)|graph]] in which an [[graph theory|edge]] can join any number of [[vertex (graph theory)|vertices]]. In contrast, in an ordinary graph, an edge connects exactly two vertices. Formally, a hypergraph <math>H</math> is a pair <math>H = (X,E)</math> where <math>X</math> is a set of elements called ''nodes'' or ''vertices'', and <math>E</math> is a set of non-empty subsets of <math>X</math> called ''[[hyperedges]]'' or ''edges''. Therefore, <math>E</math> is a subset of <math>\mathcal{P}(X) \setminus\{\emptyset\}</math>, where <math>\mathcal{P}(X)</math> is the [[power set]] of <math>X</math>. The size of the vertex set is called the ''order of the hypergraph'', and the size of edges set is the ''size of the hypergraph''. | | In [[mathematics]], a '''hypergraph''' is a generalization of a [[Graph (discrete mathematics)|graph]] in which an [[graph theory|edge]] can join any number of [[vertex (graph theory)|vertices]]. In contrast, in an ordinary graph, an edge connects exactly two vertices. Formally, a hypergraph <math>H</math> is a pair <math>H = (X,E)</math> where <math>X</math> is a set of elements called ''nodes'' or ''vertices'', and <math>E</math> is a set of non-empty subsets of <math>X</math> called ''[[hyperedges]]'' or ''edges''. Therefore, <math>E</math> is a subset of <math>\mathcal{P}(X) \setminus\{\emptyset\}</math>, where <math>\mathcal{P}(X)</math> is the [[power set]] of <math>X</math>. The size of the vertex set is called the ''order of the hypergraph'', and the size of edges set is the ''size of the hypergraph''. |