Note that α-acyclicity has the counter-intuitive property that adding hyperedges to an α-cyclic hypergraph may make it α-acyclic (for instance, adding a hyperedge containing all vertices of the hypergraph will always make it α-acyclic). Motivated in part by this perceived shortcoming, [[Ronald Fagin]]<ref name="fagin1983degrees">[[Ronald Fagin]], ''Degrees of Acyclicity for Hypergraphs and Relational Database Schemes''</ref> defined the stronger notions of β-acyclicity and γ-acyclicity. We can state β-acyclicity as the requirement that all subhypergraphs of the hypergraph are α-acyclic, which is equivalent<ref name="fagin1983degrees"/> to an earlier definition by Graham.<ref name="graham1979universal"/> The notion of γ-acyclicity is a more restrictive condition which is equivalent to several desirable properties of database schemas and is related to [[Bachman diagram]]s. Both β-acyclicity and γ-acyclicity can be tested in [[PTIME|polynomial time]]. | Note that α-acyclicity has the counter-intuitive property that adding hyperedges to an α-cyclic hypergraph may make it α-acyclic (for instance, adding a hyperedge containing all vertices of the hypergraph will always make it α-acyclic). Motivated in part by this perceived shortcoming, [[Ronald Fagin]]<ref name="fagin1983degrees">[[Ronald Fagin]], ''Degrees of Acyclicity for Hypergraphs and Relational Database Schemes''</ref> defined the stronger notions of β-acyclicity and γ-acyclicity. We can state β-acyclicity as the requirement that all subhypergraphs of the hypergraph are α-acyclic, which is equivalent<ref name="fagin1983degrees"/> to an earlier definition by Graham.<ref name="graham1979universal"/> The notion of γ-acyclicity is a more restrictive condition which is equivalent to several desirable properties of database schemas and is related to [[Bachman diagram]]s. Both β-acyclicity and γ-acyclicity can be tested in [[PTIME|polynomial time]]. |