第122行: |
第122行: |
| hyperedge of <math>H</math> which is partially contained in the subhypergraph <math>H_A</math> and is fully contained in the extension <math>Ex(H_A)</math>. | | hyperedge of <math>H</math> which is partially contained in the subhypergraph <math>H_A</math> and is fully contained in the extension <math>Ex(H_A)</math>. |
| Formally | | Formally |
| + | |
| 一个''子超图''的''扩展''是一个超图,其中每个属于 <math>H</math> 的超边都部分包含在子超图的 <math>H_A</math>,并且完全包含在扩展的 <math>Ex(H_A)</math> 中。即在形式上: | | 一个''子超图''的''扩展''是一个超图,其中每个属于 <math>H</math> 的超边都部分包含在子超图的 <math>H_A</math>,并且完全包含在扩展的 <math>Ex(H_A)</math> 中。即在形式上: |
− | :<math>Ex(H_A) = (A \cup A', E' )</math> with <math>A' = \bigcup_{e \in E} e \setminus A</math> and <math>E' = \lbrace e \in E | e \subseteq (A \cup A') \rbrace</math>. | + | :<math>Ex(H_A) = (A \cup A', E' )</math>和 <math>A' = \bigcup_{e \in E} e \setminus A</math> 和<math>E' = \lbrace e \in E | e \subseteq (A \cup A') \rbrace</math>. |
| | | |
| | | |
| The ''partial hypergraph'' is a hypergraph with some edges removed. Given a subset <math>J \subset I_e</math> of the edge index set, the partial hypergraph generated by <math>J</math> is the hypergraph | | The ''partial hypergraph'' is a hypergraph with some edges removed. Given a subset <math>J \subset I_e</math> of the edge index set, the partial hypergraph generated by <math>J</math> is the hypergraph |
| + | |
| ''部分超图''是去掉一些边的超图。给定一个边索引集的子集 <math>J \subset I_e</math> ,由 <math>J</math> 生成的部分超图就是 | | ''部分超图''是去掉一些边的超图。给定一个边索引集的子集 <math>J \subset I_e</math> ,由 <math>J</math> 生成的部分超图就是 |
| | | |
第132行: |
第134行: |
| | | |
| Given a subset <math>A\subseteq X</math>, the ''section hypergraph'' is the partial hypergraph | | Given a subset <math>A\subseteq X</math>, the ''section hypergraph'' is the partial hypergraph |
| + | |
| 而给定一个子集 <math>A\subseteq X</math>,则''分段超图''是部分超图 | | 而给定一个子集 <math>A\subseteq X</math>,则''分段超图''是部分超图 |
| :<math>H \times A = \left(A, \lbrace e_i | | | :<math>H \times A = \left(A, \lbrace e_i | |
第137行: |
第140行: |
| | | |
| The '''dual''' <math>H^*</math> of <math>H</math> is a hypergraph whose vertices and edges are interchanged, so that the vertices are given by <math>\lbrace e_i \rbrace</math> and whose edges are given by <math>\lbrace X_m \rbrace</math> where | | The '''dual''' <math>H^*</math> of <math>H</math> is a hypergraph whose vertices and edges are interchanged, so that the vertices are given by <math>\lbrace e_i \rbrace</math> and whose edges are given by <math>\lbrace X_m \rbrace</math> where |
− | <math>H</math> 的重记号 <math>H^*</math> 则是一个顶点和边互换的超图,因此顶点由 <math>\lbrace e_i \rbrace</math> 给出,边由 <math>\lbrace X_m \rbrace</math> 给出,其中 | + | |
| + | |
| + | <math>H</math> 的对偶 <math>H^*</math> 则是一个顶点和边互换的超图,因此顶点由 <math>\lbrace e_i \rbrace</math> 给出,边由 <math>\lbrace X_m \rbrace</math> 给出,其中 |
| :<math>X_m = \lbrace e_i | x_m \in e_i \rbrace. </math> | | :<math>X_m = \lbrace e_i | x_m \in e_i \rbrace. </math> |
| | | |
| When a notion of equality is properly defined, as done below, the operation of taking the dual of a hypergraph is an [[involution (mathematics)|involution]], i.e., | | When a notion of equality is properly defined, as done below, the operation of taking the dual of a hypergraph is an [[involution (mathematics)|involution]], i.e., |
| + | |
| 当等式的记号被正确定义时,如下,对一个超图采取两次运算是对偶的: | | 当等式的记号被正确定义时,如下,对一个超图采取两次运算是对偶的: |
| :<math>\left(H^*\right)^* = H.</math> | | :<math>\left(H^*\right)^* = H.</math> |
第146行: |
第152行: |
| A [[connected graph]] ''G'' with the same vertex set as a connected hypergraph ''H'' is a '''host graph''' for ''H'' if every hyperedge of ''H'' [[induced subgraph|induces]] a connected subgraph in ''G''. For a disconnected hypergraph ''H'', ''G'' is a host graph if there is a bijection between the [[connected component (graph theory)|connected components]] of ''G'' and of ''H'', such that each connected component ''G<nowiki>'</nowiki>'' of ''G'' is a host of the corresponding ''H<nowiki>'</nowiki>''. | | A [[connected graph]] ''G'' with the same vertex set as a connected hypergraph ''H'' is a '''host graph''' for ''H'' if every hyperedge of ''H'' [[induced subgraph|induces]] a connected subgraph in ''G''. For a disconnected hypergraph ''H'', ''G'' is a host graph if there is a bijection between the [[connected component (graph theory)|connected components]] of ''G'' and of ''H'', such that each connected component ''G<nowiki>'</nowiki>'' of ''G'' is a host of the corresponding ''H<nowiki>'</nowiki>''. |
| | | |
− | 对于不连通的超图 G 和具有相同顶点连通的超图 H,如果 H 的每个超边都有 G 中一个子图连接,则 G 是一个主图(host graph); | + | 对于不连通的超图'' G'' 和具有相同顶点连通的超图 ''H'',如果 ''H'' 的每个超边都有 ''G'' 中一个子图连接,则 ''G'' 是一个主图(host graph); |
− | 对于不连通的超图 H,如果 G 和 H 的连通部分之间存在一个双射,使得 G 的每个连通部分 G' 都是对应的 H' 的主图,则 G 是一个主图。 | + | 对于不连通的超图 H,如果 ''G'' 和 ''H'' 的连通部分之间存在一个双射,使得 G 的每个连通部分 ''G'' 都是对应的 ''H'' 的主图,则 ''G'' 是一个主图。 |
| | | |
| A hypergraph is ''bipartite'' if and only if its vertices can be partitioned into two classes ''U'' and ''V'' in such a way that each hyperedge with cardinality at least 2 contains at least one vertex from both classes. Alternatively, such a hypergraph is said to have [[Property B]]. | | A hypergraph is ''bipartite'' if and only if its vertices can be partitioned into two classes ''U'' and ''V'' in such a way that each hyperedge with cardinality at least 2 contains at least one vertex from both classes. Alternatively, such a hypergraph is said to have [[Property B]]. |
| | | |
− | 一个超图是二分(bipartite)的,当且仅当它的顶点能被分成两类 U 和 V :每个基数至少为 2 超边包含两类中的至少一个顶点。相反的,超图则被称为具有属性 B。 | + | 一个超图是二分(bipartite)的,当且仅当它的顶点能被分成两类''U'' 和 ''V'' :每个基数至少为 2 超边包含两类中的至少一个顶点。相反的,超图则被称为具有[[属性 B]]。 |
| | | |
| The '''2-section''' (or '''clique graph''', '''representing graph''', '''primal graph''', '''Gaifman graph''') of a hypergraph is the graph with the same vertices of the hypergraph, and edges between all pairs of vertices contained in the same hyperedge. | | The '''2-section''' (or '''clique graph''', '''representing graph''', '''primal graph''', '''Gaifman graph''') of a hypergraph is the graph with the same vertices of the hypergraph, and edges between all pairs of vertices contained in the same hyperedge. |