更改

跳到导航 跳到搜索
添加49字节 、 2020年4月22日 (三) 19:43
第122行: 第122行:  
hyperedge of <math>H</math> which is partially contained in the subhypergraph <math>H_A</math> and is fully contained in the extension <math>Ex(H_A)</math>.
 
hyperedge of <math>H</math> which is partially contained in the subhypergraph <math>H_A</math> and is fully contained in the extension <math>Ex(H_A)</math>.
 
Formally
 
Formally
 +
 
一个''子超图''的''扩展''是一个超图,其中每个属于 <math>H</math> 的超边都部分包含在子超图的 <math>H_A</math>,并且完全包含在扩展的 <math>Ex(H_A)</math> 中。即在形式上:
 
一个''子超图''的''扩展''是一个超图,其中每个属于 <math>H</math> 的超边都部分包含在子超图的 <math>H_A</math>,并且完全包含在扩展的 <math>Ex(H_A)</math> 中。即在形式上:
:<math>Ex(H_A) = (A \cup A', E' )</math> with <math>A' = \bigcup_{e \in E} e \setminus A</math> and <math>E' = \lbrace e \in E | e \subseteq (A \cup A') \rbrace</math>.
+
:<math>Ex(H_A) = (A \cup A', E' )</math><math>A' = \bigcup_{e \in E} e \setminus A</math> <math>E' = \lbrace e \in E | e \subseteq (A \cup A') \rbrace</math>.
       
The ''partial hypergraph'' is a hypergraph with some edges removed. Given a subset <math>J \subset I_e</math> of the edge index set, the partial hypergraph generated by <math>J</math> is the hypergraph
 
The ''partial hypergraph'' is a hypergraph with some edges removed. Given a subset <math>J \subset I_e</math> of the edge index set, the partial hypergraph generated by <math>J</math> is the hypergraph
 +
 
''部分超图''是去掉一些边的超图。给定一个边索引集的子集 <math>J \subset I_e</math> ,由 <math>J</math> 生成的部分超图就是
 
''部分超图''是去掉一些边的超图。给定一个边索引集的子集 <math>J \subset I_e</math> ,由 <math>J</math> 生成的部分超图就是
   第132行: 第134行:     
Given a subset <math>A\subseteq X</math>, the ''section hypergraph'' is the partial hypergraph
 
Given a subset <math>A\subseteq X</math>, the ''section hypergraph'' is the partial hypergraph
 +
 
而给定一个子集  <math>A\subseteq X</math>,则''分段超图''是部分超图
 
而给定一个子集  <math>A\subseteq X</math>,则''分段超图''是部分超图
 
:<math>H \times A = \left(A, \lbrace e_i |  
 
:<math>H \times A = \left(A, \lbrace e_i |  
第137行: 第140行:     
The '''dual''' <math>H^*</math> of <math>H</math> is a hypergraph whose vertices and edges are interchanged, so that the vertices are given by <math>\lbrace e_i \rbrace</math> and whose edges are given by <math>\lbrace X_m \rbrace</math> where
 
The '''dual''' <math>H^*</math> of <math>H</math> is a hypergraph whose vertices and edges are interchanged, so that the vertices are given by <math>\lbrace e_i \rbrace</math> and whose edges are given by <math>\lbrace X_m \rbrace</math> where
<math>H</math> 的重记号 <math>H^*</math> 则是一个顶点和边互换的超图,因此顶点由 <math>\lbrace e_i \rbrace</math> 给出,边由 <math>\lbrace X_m \rbrace</math> 给出,其中
+
 
 +
 
 +
<math>H</math> 的对偶 <math>H^*</math> 则是一个顶点和边互换的超图,因此顶点由 <math>\lbrace e_i \rbrace</math> 给出,边由 <math>\lbrace X_m \rbrace</math> 给出,其中
 
:<math>X_m = \lbrace e_i | x_m \in e_i \rbrace. </math>
 
:<math>X_m = \lbrace e_i | x_m \in e_i \rbrace. </math>
    
When a notion of equality is properly defined, as done below, the operation of taking the dual of a hypergraph is an [[involution (mathematics)|involution]], i.e.,
 
When a notion of equality is properly defined, as done below, the operation of taking the dual of a hypergraph is an [[involution (mathematics)|involution]], i.e.,
 +
 
当等式的记号被正确定义时,如下,对一个超图采取两次运算是对偶的:
 
当等式的记号被正确定义时,如下,对一个超图采取两次运算是对偶的:
 
:<math>\left(H^*\right)^* = H.</math>
 
:<math>\left(H^*\right)^* = H.</math>
第146行: 第152行:  
A [[connected graph]] ''G'' with the same vertex set as a connected hypergraph ''H'' is a '''host graph''' for ''H'' if every hyperedge of ''H'' [[induced subgraph|induces]] a connected subgraph in  ''G''. For a disconnected hypergraph ''H'', ''G'' is a host graph if there is a bijection between the [[connected component (graph theory)|connected components]] of ''G'' and of ''H'', such that each connected component ''G<nowiki>'</nowiki>'' of ''G'' is a host of the corresponding ''H<nowiki>'</nowiki>''.
 
A [[connected graph]] ''G'' with the same vertex set as a connected hypergraph ''H'' is a '''host graph''' for ''H'' if every hyperedge of ''H'' [[induced subgraph|induces]] a connected subgraph in  ''G''. For a disconnected hypergraph ''H'', ''G'' is a host graph if there is a bijection between the [[connected component (graph theory)|connected components]] of ''G'' and of ''H'', such that each connected component ''G<nowiki>'</nowiki>'' of ''G'' is a host of the corresponding ''H<nowiki>'</nowiki>''.
   −
对于不连通的超图 G 和具有相同顶点连通的超图 H,如果 H 的每个超边都有 G 中一个子图连接,则 G 是一个主图(host graph);
+
对于不连通的超图'' G'' 和具有相同顶点连通的超图 ''H'',如果 ''H'' 的每个超边都有 ''G'' 中一个子图连接,则 ''G'' 是一个主图(host graph);
对于不连通的超图 H,如果 G 和 H 的连通部分之间存在一个双射,使得 G 的每个连通部分 G' 都是对应的 H' 的主图,则 G 是一个主图。
+
对于不连通的超图 H,如果 ''G'' ''H'' 的连通部分之间存在一个双射,使得 G 的每个连通部分 ''G'' 都是对应的 ''H'' 的主图,则 ''G'' 是一个主图。
    
A hypergraph is ''bipartite'' if and only if its vertices can be partitioned into two classes ''U'' and ''V'' in such a way that each hyperedge with cardinality at least 2 contains at least one vertex from both classes. Alternatively, such a hypergraph is said to have [[Property B]].
 
A hypergraph is ''bipartite'' if and only if its vertices can be partitioned into two classes ''U'' and ''V'' in such a way that each hyperedge with cardinality at least 2 contains at least one vertex from both classes. Alternatively, such a hypergraph is said to have [[Property B]].
   −
一个超图是二分(bipartite)的,当且仅当它的顶点能被分成两类 U 和 V  :每个基数至少为 2 超边包含两类中的至少一个顶点。相反的,超图则被称为具有属性 B。
+
一个超图是二分(bipartite)的,当且仅当它的顶点能被分成两类''U'' ''V'' :每个基数至少为 2 超边包含两类中的至少一个顶点。相反的,超图则被称为具有[[属性 B]]。
    
The '''2-section''' (or '''clique graph''', '''representing graph''', '''primal graph''', '''Gaifman graph''') of a hypergraph is the graph with the same vertices of the hypergraph, and edges between all pairs of vertices contained in the same hyperedge.
 
The '''2-section''' (or '''clique graph''', '''representing graph''', '''primal graph''', '''Gaifman graph''') of a hypergraph is the graph with the same vertices of the hypergraph, and edges between all pairs of vertices contained in the same hyperedge.
377

个编辑

导航菜单