更改

跳到导航 跳到搜索
大小无更改 、 2020年4月23日 (四) 08:02
第182行: 第182行:  
[[File:bipartie graph.jpeg|200px|缩略图|右| 设<math>G=(V,E)</math>是一个无向图,如果顶点V可分割为两个互不相交的子集<math> {(group1, group2)}</math>,并且图中的每条边<math>{(i,j)}</math>所关联的两个顶点<math>{i}</math>和<math>{j}</math>分别属于这两个不同的部分<math>{(i \in group1,j \in group2)}</math>,则称图<math>{G}</math>为一个二分图。]]
 
[[File:bipartie graph.jpeg|200px|缩略图|右| 设<math>G=(V,E)</math>是一个无向图,如果顶点V可分割为两个互不相交的子集<math> {(group1, group2)}</math>,并且图中的每条边<math>{(i,j)}</math>所关联的两个顶点<math>{i}</math>和<math>{j}</math>分别属于这两个不同的部分<math>{(i \in group1,j \in group2)}</math>,则称图<math>{G}</math>为一个二分图。]]
   −
一个'''超图 <math>{H} </math>'''可以用二部图<math>{BG} </math>表示,其构成如下: 集合<math>X</math>和<math> E </math>是<math>BG</math>的分割,而且 ("x<sub>1</sub>",  "e<sub>1</sub>") 与边连通当且仅当顶点"x<sub>1</sub>"包含在<math>H </math>的边" e<sub>1</sub>"中。 反之,任何具有固定的'''部分 part'''且在第二部分中没有不连通节点的二部图也代表具有上述性质的部分超图。 这个二部图也称为'''关联图'''。
+
一个'''超图 <math>{H} </math>'''可以用二分图<math>{BG} </math>表示,其构成如下: 集合<math>X</math>和<math> E </math>是<math>BG</math>的分割,而且 ("x<sub>1</sub>",  "e<sub>1</sub>") 与边连通当且仅当顶点"x<sub>1</sub>"包含在<math>H </math>的边" e<sub>1</sub>"中。 反之,任何具有固定的'''部分 part'''且在第二部分中没有不连通节点的二分图也代表具有上述性质的部分超图。 这个二分图也称为'''关联图'''。
    
==无环性 Acyclicity==
 
==无环性 Acyclicity==
1,526

个编辑

导航菜单