Logistic映射 f (blue)在<math>\mu</math>=3.5的条件下进行迭代,得到<math> f^2</math>、<math> f^3</math> 、<math> f^4</math>和 <math> f^5</math>。 例如,对于水平轴上的任何初始值,<math> f^4</math>为四次迭代之后得到的值。和其他混沌系统比较,Logistic映射的相对简单性使它成为考虑混沌概念的一个广泛使用的切入点。简单来说,混沌就是对初始条件的高度灵敏度。<math>\mu</math>=3.5是在3.57及4之间的大部分数值都可以使Logistic映射出现该特性。<ref name="May, Robert M 1976" /> 由于映射本身对定义域的拉伸及折叠,使得其对初始条件有高度灵敏度,故表现出来了混沌特性。Logistic映射的二次差分方程可视为是对于区间(0,1)拉伸及折叠的过程。<ref name="Gleick">{{cite book |last=Gleick |first=James |title=Chaos: Making a New Science |year=1987 |publisher=Penguin Books |location=London |isbn=978-0-14-009250-9 }}</ref> | Logistic映射 f (blue)在<math>\mu</math>=3.5的条件下进行迭代,得到<math> f^2</math>、<math> f^3</math> 、<math> f^4</math>和 <math> f^5</math>。 例如,对于水平轴上的任何初始值,<math> f^4</math>为四次迭代之后得到的值。和其他混沌系统比较,Logistic映射的相对简单性使它成为考虑混沌概念的一个广泛使用的切入点。简单来说,混沌就是对初始条件的高度灵敏度。<math>\mu</math>=3.5是在3.57及4之间的大部分数值都可以使Logistic映射出现该特性。<ref name="May, Robert M 1976" /> 由于映射本身对定义域的拉伸及折叠,使得其对初始条件有高度灵敏度,故表现出来了混沌特性。Logistic映射的二次差分方程可视为是对于区间(0,1)拉伸及折叠的过程。<ref name="Gleick">{{cite book |last=Gleick |first=James |title=Chaos: Making a New Science |year=1987 |publisher=Penguin Books |location=London |isbn=978-0-14-009250-9 }}</ref> |