更改

跳到导航 跳到搜索
添加2,927字节 、 2020年5月5日 (二) 20:30
无编辑摘要
第83行: 第83行:  
* 后记 寻找人类传播行为的基因 232
 
* 后记 寻找人类传播行为的基因 232
 
== 原文摘录 ==
 
== 原文摘录 ==
可以从原文中放一些片段,借鉴豆瓣、京东、当当等购书网站提供的信息,注明引用出处即可。
+
p5
 +
二、什么是“计算社会科学”与“计算传播学”?
 +
2009年,包括Lazer, Pentland等多位著名学者共同署名的文章《计算社会科学》(“Computational Social Science" ) 发表,标志着“计算社会科学”这一新兴学科的建立。该文章定义了“计算社会科学”:通过对海量数据的采集和分析,旨在揭示人类个体和群体行为模式的新兴学科。具体而言,“计算社会科学”旨在通过对海量数据的收集、处理、存储,同时利用计算技术(如自动内容分类、语义建模、自然语言处理、模拟和统计模型)分析人类行为模式。<br>
 +
该文章发表4年后,至2013年, Watts对计算社会科学发展现状做了简要总结。该文章认为,计算社会科学至2013年,已经在“海量数据获取”“计算工具的使用”以及“跨学科合作”等几方面取得了显著进步。但该领域仍有一些重要问题没有解决。例如,对经济危机、传染病和社会运动等重要社会问题的探讨;而这些领域进展缓慢主要缘于社会问题的复杂性。未来,计算社会科学的发展,还需要在以下几个方向着力:对于跨平台数据( Multi -Source Data)的获取,能够帮研究者更全方位地观察个体行为;在线实验的平台搭建以及在线实验的执行,能够更有效地研究因果关系;最重要的是,社会科学家需要更深入地融人计算社会科学研究。社会科学问题的提出和解决,很大程度上依赖于社会科学家,而不是计算机或其他相关学科的研究者。<br>
 +
因此,在“计算社会科学”研究范式下,我们对于计算社会科学分支之一的计算传播学做出如下定义:计算传播学致力于寻找传播学可计算化的基因,以传播网络分析、传播文本挖掘、数据科学等为主要分析工具,大规模地收集并分析人类传播行为数据,挖掘人类传播行为背后的模式和法则,分析模式背后的生成机制与基本原理。“新数据”“新方法”以及“重要问题”,是计算传播学不可或缺的三个重要元素。对于初次接触“计算传播学”这一概念的读者,学习这一新兴领域,大概需要两部分知识:理论与方法。理论层面,包括社会网络、人类行为理论、公共意见形成与演化以及信息传播模型等。方法层面,又分为数据分析方法和编程软件的学习:前者包括社会网络分析(如指数随机图模式),文本挖掘,网络挖掘方法(如数据抓取、机器学习、深度学习),统计分析(如时间序列模型、空间分析),基于个体的模拟建模( Agent- -Based Modeling )和可视化分析及技术;而后者则主要包括当前主流开源编程软件,如R、Python、Echart (可视化分析)以及部分商业软件(如Tableau等)。
 +
 
 +
 
    
== 部分书评 ==
 
== 部分书评 ==
<big>[https://book.douban.com/review/9804380/ 寻找人类传播行为的基因:《计算传播学导论》后记] <br>
+
<big>[https://book.douban.com/review/9804380/ 寻找人类传播行为的基因:《计算传播学导论》后记] <br></big>
【作者:Socrates 来自豆瓣】<br></big>
+
【作者:Socrates 来自豆瓣】<br>
    
二十一世纪是计算社会科学的时代。1998年邓肯·瓦茨关于小世界网络的模型和1999年阿尔伯特·巴拉巴西关于幂律和无标度网络的研究复兴了网络科学。一石激起千层浪,在学术领域产生了深远的影响。对于万维网上的人类行为的研究也形成了一个子领域,被称之为万维网科学(Web Science);伴随着社交媒体等数字媒体的发展,社会网络分析开始受到前所未有的重视,社交网络上的信息流动网络研究也引起广泛的兴趣;与此同时,机器学习和数据科学取得了突飞猛进的发展,进一步加速了计算化的浪潮;在新闻传播产业当中,数据驱动的新闻生产、计算广告和媒体推荐系统开始成为席卷世界的潮流。面对海量的互联网数据、持续困扰人类的重大社会问题、崭新的理论视角、诱人的物理学模型,在世界大战中发展起来的新闻传播学研究会走向什么地方?这构成了困扰我们的时代问题,而计算传播学正是试图回应这一时代叩问的一种尝试。<br>
 
二十一世纪是计算社会科学的时代。1998年邓肯·瓦茨关于小世界网络的模型和1999年阿尔伯特·巴拉巴西关于幂律和无标度网络的研究复兴了网络科学。一石激起千层浪,在学术领域产生了深远的影响。对于万维网上的人类行为的研究也形成了一个子领域,被称之为万维网科学(Web Science);伴随着社交媒体等数字媒体的发展,社会网络分析开始受到前所未有的重视,社交网络上的信息流动网络研究也引起广泛的兴趣;与此同时,机器学习和数据科学取得了突飞猛进的发展,进一步加速了计算化的浪潮;在新闻传播产业当中,数据驱动的新闻生产、计算广告和媒体推荐系统开始成为席卷世界的潮流。面对海量的互联网数据、持续困扰人类的重大社会问题、崭新的理论视角、诱人的物理学模型,在世界大战中发展起来的新闻传播学研究会走向什么地方?这构成了困扰我们的时代问题,而计算传播学正是试图回应这一时代叩问的一种尝试。<br>
第125行: 第131行:  
* Slides和Code见:https://github.com/computational-class/ccrbook
 
* Slides和Code见:https://github.com/computational-class/ccrbook
   −
<big>== 相关书籍 ==</big>
+
== 相关书籍 ==
和这个主题相关的还有哪些推荐的书。
+
[https://book.douban.com/subject/26588975/ 《社交网络上的计算传播学》]
 
+
[http://wiki.swarma.net/index.php?title=%E8%AE%A1%E7%AE%97%E4%BC%A0%E6%92%AD%E5%AD%A6&amp;variant=zh 计算传播学-集智百科]
    
本词条内容翻译自 wikipedia.org,遵守 CC3.0协议。
 
本词条内容翻译自 wikipedia.org,遵守 CC3.0协议。
46

个编辑

导航菜单