更改

跳到导航 跳到搜索
删除90字节 、 2020年5月7日 (四) 10:35
无编辑摘要
第83行: 第83行:       −
The biological studies endeavor to interpret the motifs detected for biological networks. For example, in work following,<ref name="she1" /> the network motifs found in ''[[Escherichia coli|E. coli]]'' were discovered in the transcription networks of other bacteria<ref name="eic1">{{cite journal  |vauthors=Eichenberger P, Fujita M, Jensen ST, etal |title=The program of gene transcription for a single differentiating cell type during sporulation in ''Bacillus subtilis'' |journal=PLOS Biology |volume=2 |issue=10 |pages=e328 |date=October 2004 |pmid=15383836 |pmc=517825 |doi=10.1371/journal.pbio.0020328 }} {{open access}}</ref> as well as yeast<ref name="mil3">{{cite journal |vauthors=Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U |title=Network motifs: simple building blocks of complex networks |journal=Science |volume=298 |issue=5594 |pages=824–7 |date=October 2002 |doi=10.1126/science.298.5594.824 |pmid=12399590|bibcode=2002Sci...298..824M |citeseerx=10.1.1.225.8750 }}</ref><ref name="lee1">{{cite journal  |vauthors=Lee TI, Rinaldi NJ, Robert F, etal |title=Transcriptional regulatory networks in Saccharomyces cerevisiae |journal=Science |volume=298 |issue=5594 |pages=799–804 |date=October 2002 |pmid=12399584 |doi=10.1126/science.1075090 |bibcode=2002Sci...298..799L }}</ref> and higher organisms.<ref name="odo1">{{cite journal  |vauthors=Odom DT, Zizlsperger N, Gordon DB, etal |title=Control of pancreas and liver gene expression by HNF transcription factors |journal=Science |volume=303 |issue=5662 |pages=1378–81 |date=February 2004 |pmid=14988562 |pmc=3012624 |doi=10.1126/science.1089769 |bibcode=2004Sci...303.1378O }}</ref><ref name="boy1">{{cite journal  |vauthors=Boyer LA, Lee TI, Cole MF, etal |title=Core transcriptional regulatory circuitry in human embryonic stem cells |journal=Cell |volume=122 |issue=6 |pages=947–56 |date=September 2005 |pmid=16153702 |pmc=3006442 |doi=10.1016/j.cell.2005.08.020 }}</ref><ref name="ira1">{{cite journal |vauthors=Iranfar N, Fuller D, Loomis WF |title=Transcriptional regulation of post-aggregation genes in Dictyostelium by a feed-forward loop involving GBF and LagC |journal=Dev. Biol. |volume=290 |issue=2 |pages=460–9 |date=February 2006 |pmid=16386729 |doi=10.1016/j.ydbio.2005.11.035 |doi-access=free }}</ref> A distinct set of network motifs were identified in other types of biological networks such as neuronal networks and protein interaction networks.<ref name="mil2" /><ref name="maa1">{{cite journal  |vauthors=Ma'ayan A, Jenkins SL, Neves S, etal |title=Formation of regulatory patterns during signal propagation in a Mammalian cellular network |journal=Science |volume=309 |issue=5737 |pages=1078–83 |date=August 2005 |pmid=16099987 |pmc=3032439 |doi=10.1126/science.1108876 |bibcode=2005Sci...309.1078M }}</ref><ref name="pta1">{{cite journal  |vauthors=Ptacek J, Devgan G, Michaud G, etal |title=Global analysis of protein phosphorylation in yeast |journal=Nature |volume=438 |issue=7068 |pages=679–84 |date=December 2005 |pmid=16319894 |doi=10.1038/nature04187|bibcode=2005Natur.438..679P |url=https://authors.library.caltech.edu/56271/2/Tables.pdf |type=Submitted manuscript }}</ref>
+
The biological studies endeavor to interpret the motifs detected for biological networks. For example, in work following,<ref name="she1" /> the network motifs found in ''[[Escherichia coli|E. coli]]'' were discovered in the transcription networks of other bacteria<ref name="eic1">{{cite journal  |vauthors=Eichenberger P, Fujita M, Jensen ST, etal |title=The program of gene transcription for a single differentiating cell type during sporulation in ''Bacillus subtilis'' |journal=PLOS Biology |volume=2 |issue=10 |pages=e328 |date=October 2004 |pmid=15383836 |pmc=517825 |doi=10.1371/journal.pbio.0020328 }} </ref> as well as yeast<ref name="mil3">{{cite journal |vauthors=Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U |title=Network motifs: simple building blocks of complex networks |journal=Science |volume=298 |issue=5594 |pages=824–7 |date=October 2002 |doi=10.1126/science.298.5594.824 |pmid=12399590|bibcode=2002Sci...298..824M |citeseerx=10.1.1.225.8750 }}</ref><ref name="lee1">{{cite journal  |vauthors=Lee TI, Rinaldi NJ, Robert F, etal |title=Transcriptional regulatory networks in Saccharomyces cerevisiae |journal=Science |volume=298 |issue=5594 |pages=799–804 |date=October 2002 |pmid=12399584 |doi=10.1126/science.1075090 |bibcode=2002Sci...298..799L }}</ref> and higher organisms.<ref name="odo1">{{cite journal  |vauthors=Odom DT, Zizlsperger N, Gordon DB, etal |title=Control of pancreas and liver gene expression by HNF transcription factors |journal=Science |volume=303 |issue=5662 |pages=1378–81 |date=February 2004 |pmid=14988562 |pmc=3012624 |doi=10.1126/science.1089769 |bibcode=2004Sci...303.1378O }}</ref><ref name="boy1">{{cite journal  |vauthors=Boyer LA, Lee TI, Cole MF, etal |title=Core transcriptional regulatory circuitry in human embryonic stem cells |journal=Cell |volume=122 |issue=6 |pages=947–56 |date=September 2005 |pmid=16153702 |pmc=3006442 |doi=10.1016/j.cell.2005.08.020 }}</ref><ref name="ira1">{{cite journal |vauthors=Iranfar N, Fuller D, Loomis WF |title=Transcriptional regulation of post-aggregation genes in Dictyostelium by a feed-forward loop involving GBF and LagC |journal=Dev. Biol. |volume=290 |issue=2 |pages=460–9 |date=February 2006 |pmid=16386729 |doi=10.1016/j.ydbio.2005.11.035 |doi-access=free }}</ref> A distinct set of network motifs were identified in other types of biological networks such as neuronal networks and protein interaction networks.<ref name="mil2" /><ref name="maa1">{{cite journal  |vauthors=Ma'ayan A, Jenkins SL, Neves S, etal |title=Formation of regulatory patterns during signal propagation in a Mammalian cellular network |journal=Science |volume=309 |issue=5737 |pages=1078–83 |date=August 2005 |pmid=16099987 |pmc=3032439 |doi=10.1126/science.1108876 |bibcode=2005Sci...309.1078M }}</ref><ref name="pta1">{{cite journal  |vauthors=Ptacek J, Devgan G, Michaud G, etal |title=Global analysis of protein phosphorylation in yeast |journal=Nature |volume=438 |issue=7068 |pages=679–84 |date=December 2005 |pmid=16319894 |doi=10.1038/nature04187|bibcode=2005Natur.438..679P |url=https://authors.library.caltech.edu/56271/2/Tables.pdf |type=Submitted manuscript }}</ref>
   −
生物学研究试图解释为生物网络检测到的模体。例如,在接下来的工作中,文献[17]在大肠杆菌中发现的网络模体存在于其他细菌<ref name="eic1">{{cite journal  |vauthors=Eichenberger P, Fujita M, Jensen ST, etal |title=The program of gene transcription for a single differentiating cell type during sporulation in ''Bacillus subtilis'' |journal=PLOS Biology |volume=2 |issue=10 |pages=e328 |date=October 2004 |pmid=15383836 |pmc=517825 |doi=10.1371/journal.pbio.0020328 }} {{open access}}</ref>以及酵母<ref name="mil3">{{cite journal |vauthors=Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U |title=Network motifs: simple building blocks of complex networks |journal=Science |volume=298 |issue=5594 |pages=824–7 |date=October 2002 |doi=10.1126/science.298.5594.824 |pmid=12399590|bibcode=2002Sci...298..824M |citeseerx=10.1.1.225.8750 }}</ref><ref name="lee1">{{cite journal  |vauthors=Lee TI, Rinaldi NJ, Robert F, etal |title=Transcriptional regulatory networks in Saccharomyces cerevisiae |journal=Science |volume=298 |issue=5594 |pages=799–804 |date=October 2002 |pmid=12399584 |doi=10.1126/science.1075090 |bibcode=2002Sci...298..799L }}</ref>和高等生物的转录网络中。文献<ref name="odo1">{{cite journal  |vauthors=Odom DT, Zizlsperger N, Gordon DB, etal |title=Control of pancreas and liver gene expression by HNF transcription factors |journal=Science |volume=303 |issue=5662 |pages=1378–81 |date=February 2004 |pmid=14988562 |pmc=3012624 |doi=10.1126/science.1089769 |bibcode=2004Sci...303.1378O }}</ref><ref name="boy1">{{cite journal  |vauthors=Boyer LA, Lee TI, Cole MF, etal |title=Core transcriptional regulatory circuitry in human embryonic stem cells |journal=Cell |volume=122 |issue=6 |pages=947–56 |date=September 2005 |pmid=16153702 |pmc=3006442 |doi=10.1016/j.cell.2005.08.020 }}</ref><ref name="ira1">{{cite journal |vauthors=Iranfar N, Fuller D, Loomis WF |title=Transcriptional regulation of post-aggregation genes in Dictyostelium by a feed-forward loop involving GBF and LagC |journal=Dev. Biol. |volume=290 |issue=2 |pages=460–9 |date=February 2006 |pmid=16386729 |doi=10.1016/j.ydbio.2005.11.035 |doi-access=free }}</ref>在其他类型的生物网络中发现了一组不同的网络模体,如神经元网络和蛋白质相互作用网络。<ref name="mil2" /><ref name="maa1">{{cite journal  |vauthors=Ma'ayan A, Jenkins SL, Neves S, etal |title=Formation of regulatory patterns during signal propagation in a Mammalian cellular network |journal=Science |volume=309 |issue=5737 |pages=1078–83 |date=August 2005 |pmid=16099987 |pmc=3032439 |doi=10.1126/science.1108876 |bibcode=2005Sci...309.1078M }}</ref><ref name="pta1">{{cite journal  |vauthors=Ptacek J, Devgan G, Michaud G, etal |title=Global analysis of protein phosphorylation in yeast |journal=Nature |volume=438 |issue=7068 |pages=679–84 |date=December 2005 |pmid=16319894 |doi=10.1038/nature04187|bibcode=2005Natur.438..679P |url=https://authors.library.caltech.edu/56271/2/Tables.pdf |type=Submitted manuscript }}</ref>
+
生物学研究试图解释为生物网络检测到的模体。例如,在接下来的工作中,文献[17]在大肠杆菌中发现的网络模体存在于其他细菌<ref name="eic1">{{cite journal  |vauthors=Eichenberger P, Fujita M, Jensen ST, etal |title=The program of gene transcription for a single differentiating cell type during sporulation in ''Bacillus subtilis'' |journal=PLOS Biology |volume=2 |issue=10 |pages=e328 |date=October 2004 |pmid=15383836 |pmc=517825 |doi=10.1371/journal.pbio.0020328 }} </ref>以及酵母<ref name="mil3">{{cite journal |vauthors=Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U |title=Network motifs: simple building blocks of complex networks |journal=Science |volume=298 |issue=5594 |pages=824–7 |date=October 2002 |doi=10.1126/science.298.5594.824 |pmid=12399590|bibcode=2002Sci...298..824M |citeseerx=10.1.1.225.8750 }}</ref><ref name="lee1">{{cite journal  |vauthors=Lee TI, Rinaldi NJ, Robert F, etal |title=Transcriptional regulatory networks in Saccharomyces cerevisiae |journal=Science |volume=298 |issue=5594 |pages=799–804 |date=October 2002 |pmid=12399584 |doi=10.1126/science.1075090 |bibcode=2002Sci...298..799L }}</ref>和高等生物的转录网络中。文献<ref name="odo1">{{cite journal  |vauthors=Odom DT, Zizlsperger N, Gordon DB, etal |title=Control of pancreas and liver gene expression by HNF transcription factors |journal=Science |volume=303 |issue=5662 |pages=1378–81 |date=February 2004 |pmid=14988562 |pmc=3012624 |doi=10.1126/science.1089769 |bibcode=2004Sci...303.1378O }}</ref><ref name="boy1">{{cite journal  |vauthors=Boyer LA, Lee TI, Cole MF, etal |title=Core transcriptional regulatory circuitry in human embryonic stem cells |journal=Cell |volume=122 |issue=6 |pages=947–56 |date=September 2005 |pmid=16153702 |pmc=3006442 |doi=10.1016/j.cell.2005.08.020 }}</ref><ref name="ira1">{{cite journal |vauthors=Iranfar N, Fuller D, Loomis WF |title=Transcriptional regulation of post-aggregation genes in Dictyostelium by a feed-forward loop involving GBF and LagC |journal=Dev. Biol. |volume=290 |issue=2 |pages=460–9 |date=February 2006 |pmid=16386729 |doi=10.1016/j.ydbio.2005.11.035 |doi-access=free }}</ref>在其他类型的生物网络中发现了一组不同的网络模体,如神经元网络和蛋白质相互作用网络。<ref name="mil2" /><ref name="maa1">{{cite journal  |vauthors=Ma'ayan A, Jenkins SL, Neves S, etal |title=Formation of regulatory patterns during signal propagation in a Mammalian cellular network |journal=Science |volume=309 |issue=5737 |pages=1078–83 |date=August 2005 |pmid=16099987 |pmc=3032439 |doi=10.1126/science.1108876 |bibcode=2005Sci...309.1078M }}</ref><ref name="pta1">{{cite journal  |vauthors=Ptacek J, Devgan G, Michaud G, etal |title=Global analysis of protein phosphorylation in yeast |journal=Nature |volume=438 |issue=7068 |pages=679–84 |date=December 2005 |pmid=16319894 |doi=10.1038/nature04187|bibcode=2005Natur.438..679P |url=https://authors.library.caltech.edu/56271/2/Tables.pdf |type=Submitted manuscript }}</ref>
      第479行: 第479行:     
===Kavosh===
 
===Kavosh===
A recently introduced algorithm named ''Kavosh'' <ref name="kash1">{{cite journal|vauthors=Kashani ZR, Ahrabian H, Elahi E, Nowzari-Dalini A, Ansari ES, Asadi S, Mohammadi S, Schreiber F, Masoudi-Nejad A |title=Kavosh: a new algorithm for finding network motifs |journal=BMC Bioinformatics |year=2009 |volume=10 |issue=318|pages=318 |doi=10.1186/1471-2105-10-318 |pmid=19799800 |pmc=2765973}} {{open access}}</ref> aims at improved main memory usage. ''Kavosh'' is usable to detect NM in both directed and undirected networks. The main idea of the enumeration is similar to the ''GK'' and ''MODA'' algorithms, which first find all {{math|k}}-size sub-graphs that a particular node participated in, then remove the node, and subsequently repeat this process for the remaining nodes.<ref name="kash1" />
+
A recently introduced algorithm named ''Kavosh'' <ref name="kash1">{{cite journal|vauthors=Kashani ZR, Ahrabian H, Elahi E, Nowzari-Dalini A, Ansari ES, Asadi S, Mohammadi S, Schreiber F, Masoudi-Nejad A |title=Kavosh: a new algorithm for finding network motifs |journal=BMC Bioinformatics |year=2009 |volume=10 |issue=318|pages=318 |doi=10.1186/1471-2105-10-318 |pmid=19799800 |pmc=2765973}} </ref> aims at improved main memory usage. ''Kavosh'' is usable to detect NM in both directed and undirected networks. The main idea of the enumeration is similar to the ''GK'' and ''MODA'' algorithms, which first find all {{math|k}}-size sub-graphs that a particular node participated in, then remove the node, and subsequently repeat this process for the remaining nodes.<ref name="kash1" />
    
For counting the sub-graphs of size {{math|k}} that include a particular node, trees with maximum depth of k, rooted at this node and based on neighborhood relationship are implicitly built. Children of each node include both incoming and outgoing adjacent nodes. To descend the tree, a child is chosen at each level with the restriction that a particular child can be included only if it has not been included at any upper level. After having descended to the lowest level possible, the tree is again ascended and the process is repeated with the stipulation that nodes visited in earlier paths of a descendant are now considered unvisited nodes. A final restriction in building trees is that all children in a particular tree must have numerical labels larger than the label of the root of the tree. The restrictions on the labels of the children are similar to the conditions which ''GK'' and ''ESU'' algorithm use to avoid overcounting sub-graphs.
 
For counting the sub-graphs of size {{math|k}} that include a particular node, trees with maximum depth of k, rooted at this node and based on neighborhood relationship are implicitly built. Children of each node include both incoming and outgoing adjacent nodes. To descend the tree, a child is chosen at each level with the restriction that a particular child can be included only if it has not been included at any upper level. After having descended to the lowest level possible, the tree is again ascended and the process is repeated with the stipulation that nodes visited in earlier paths of a descendant are now considered unvisited nodes. A final restriction in building trees is that all children in a particular tree must have numerical labels larger than the label of the root of the tree. The restrictions on the labels of the children are similar to the conditions which ''GK'' and ''ESU'' algorithm use to avoid overcounting sub-graphs.
第534行: 第534行:  
|}
 
|}
   −
Recently a ''Cytoscape'' plugin called ''CytoKavosh'' <ref name="mas2">{{cite journal|author1=Ali Masoudi-Nejad |author2=Mitra Anasariola |author3=Ali Salehzadeh-Yazdi |author4=Sahand Khakabimamaghani |title=CytoKavosh: a Cytoscape Plug-in for Finding Network Motifs in Large Biological Networks |journal=PLoS ONE |volume=7 |issue=8 |pages=e43287 |year=2012 |doi=10.1371/journal.pone.0043287|pmid=22952659 |pmc=3430699 |bibcode=2012PLoSO...743287M }} {{open access}}</ref> is developed for this software. It is available via ''Cytoscape'' web page [http://apps.cytoscape.org/apps/cytokavosh].
+
Recently a ''Cytoscape'' plugin called ''CytoKavosh'' <ref name="mas2">{{cite journal|author1=Ali Masoudi-Nejad |author2=Mitra Anasariola |author3=Ali Salehzadeh-Yazdi |author4=Sahand Khakabimamaghani |title=CytoKavosh: a Cytoscape Plug-in for Finding Network Motifs in Large Biological Networks |journal=PLoS ONE |volume=7 |issue=8 |pages=e43287 |year=2012 |doi=10.1371/journal.pone.0043287|pmid=22952659 |pmc=3430699 |bibcode=2012PLoSO...743287M }} </ref> is developed for this software. It is available via ''Cytoscape'' web page [http://apps.cytoscape.org/apps/cytokavosh].
    
===G-Tries===
 
===G-Tries===
第813行: 第813行:  
==批判==
 
==批判==
   −
关于拓扑子结构的一个(某种程度上隐含的)前提性假设是其具有特定的功能重要性。但这个假设最近遭到质疑,有人提出在不同的网络环境下模体可能表现出多样性,例如双扇模体,所以<ref name="ad">{{cite journal |vauthors=Ingram PJ, Stumpf MP, Stark J |title=Network motifs: structure does not determine function |journal=BMC Genomics |volume=7 |pages=108 |year=2006 |pmid=16677373 |pmc=1488845 |doi=10.1186/1471-2164-7-108 }} {{open access}}</ref>模体的结构不必然决定功能,网络结构也不当然能揭示其功能;这种见解由来已久,可参见【Sin 操纵子】</font>。<ref>{{cite journal |vauthors=Voigt CA, Wolf DM, Arkin AP |title=The ''Bacillus subtilis'' sin operon: an evolvable network motif |journal=Genetics |volume=169 |issue=3 |pages=1187–202 |date=March 2005 |pmid=15466432 |pmc=1449569 |doi=10.1534/genetics.104.031955 |url=http://www.genetics.org/cgi/pmidlookup?view=long&pmid=15466432}}</ref>
+
关于拓扑子结构的一个(某种程度上隐含的)前提性假设是其具有特定的功能重要性。但这个假设最近遭到质疑,有人提出在不同的网络环境下模体可能表现出多样性,例如双扇模体,所以<ref name="ad">{{cite journal |vauthors=Ingram PJ, Stumpf MP, Stark J |title=Network motifs: structure does not determine function |journal=BMC Genomics |volume=7 |pages=108 |year=2006 |pmid=16677373 |pmc=1488845 |doi=10.1186/1471-2164-7-108 }} </ref>模体的结构不必然决定功能,网络结构也不当然能揭示其功能;这种见解由来已久,可参见【Sin 操纵子】</font>。<ref>{{cite journal |vauthors=Voigt CA, Wolf DM, Arkin AP |title=The ''Bacillus subtilis'' sin operon: an evolvable network motif |journal=Genetics |volume=169 |issue=3 |pages=1187–202 |date=March 2005 |pmid=15466432 |pmc=1449569 |doi=10.1534/genetics.104.031955 |url=http://www.genetics.org/cgi/pmidlookup?view=long&pmid=15466432}}</ref>
      −
大多数模体功能分析是基于模体孤立运行的情形。最近的研究<ref>{{cite journal |vauthors=Knabe JF, Nehaniv CL, Schilstra MJ |title=Do motifs reflect evolved function?—No convergent evolution of genetic regulatory network subgraph topologies |journal=BioSystems |volume=94 |issue=1–2 |pages=68–74 |year=2008 |pmid=18611431 |doi=10.1016/j.biosystems.2008.05.012 }}</ref>表明网络环境至关重要,不能忽视网络环境而仅从本地结构来对其功能进行推论——引用的论文还回顾了对观测数据的批判及其他可能的解释。人们研究了单个模体模组对网络全局的动力学影响及其分析<ref>{{cite journal |vauthors=Taylor D, Restrepo JG |title=Network connectivity during mergers and growth: Optimizing the addition of a module |journal=Physical Review E |volume=83 |issue=6 |year=2011 |page=66112 |doi=10.1103/PhysRevE.83.066112 |pmid=21797446 |bibcode=2011PhRvE..83f6112T |arxiv=1102.4876 }}</ref>。而另一项近期的研究工作提出生物网络的某些拓扑特征能自然地引起经典模体的常见形态,让人不禁疑问:这样的发生频率是否能证明模体的结构是出于其对所在网络运行的功能性贡献而被选择保留下的结果?<ref>{{cite journal|last1=Konagurthu|first1=Arun S.|last2=Lesk|first2=Arthur M.|title=Single and multiple input modules in regulatory networks|journal=Proteins: Structure, Function, and Bioinformatics|date=23 April 2008|volume=73|issue=2|pages=320–324|doi=10.1002/prot.22053|pmid=18433061}}</ref><ref>{{cite journal |vauthors=Konagurthu AS, Lesk AM |title=On the origin of distribution patterns of motifs in biological networks |journal=BMC Syst Biol |volume=2 |pages=73 |year=2008 |pmid=18700017 |pmc=2538512 |doi=10.1186/1752-0509-2-73 }} {{open access}}</ref>
+
大多数模体功能分析是基于模体孤立运行的情形。最近的研究<ref>{{cite journal |vauthors=Knabe JF, Nehaniv CL, Schilstra MJ |title=Do motifs reflect evolved function?—No convergent evolution of genetic regulatory network subgraph topologies |journal=BioSystems |volume=94 |issue=1–2 |pages=68–74 |year=2008 |pmid=18611431 |doi=10.1016/j.biosystems.2008.05.012 }}</ref>表明网络环境至关重要,不能忽视网络环境而仅从本地结构来对其功能进行推论——引用的论文还回顾了对观测数据的批判及其他可能的解释。人们研究了单个模体模组对网络全局的动力学影响及其分析<ref>{{cite journal |vauthors=Taylor D, Restrepo JG |title=Network connectivity during mergers and growth: Optimizing the addition of a module |journal=Physical Review E |volume=83 |issue=6 |year=2011 |page=66112 |doi=10.1103/PhysRevE.83.066112 |pmid=21797446 |bibcode=2011PhRvE..83f6112T |arxiv=1102.4876 }}</ref>。而另一项近期的研究工作提出生物网络的某些拓扑特征能自然地引起经典模体的常见形态,让人不禁疑问:这样的发生频率是否能证明模体的结构是出于其对所在网络运行的功能性贡献而被选择保留下的结果?<ref>{{cite journal|last1=Konagurthu|first1=Arun S.|last2=Lesk|first2=Arthur M.|title=Single and multiple input modules in regulatory networks|journal=Proteins: Structure, Function, and Bioinformatics|date=23 April 2008|volume=73|issue=2|pages=320–324|doi=10.1002/prot.22053|pmid=18433061}}</ref><ref>{{cite journal |vauthors=Konagurthu AS, Lesk AM |title=On the origin of distribution patterns of motifs in biological networks |journal=BMC Syst Biol |volume=2 |pages=73 |year=2008 |pmid=18700017 |pmc=2538512 |doi=10.1186/1752-0509-2-73 }} </ref>
     
7,129

个编辑

导航菜单