更改

跳到导航 跳到搜索
删除196字节 、 2020年5月10日 (日) 20:13
第182行: 第182行:  
Flaounas et al.<ref>{{cite journal|author1=I. Flaounas|author2=O. Ali|author3=M. Turchi|author4=T. Lansdall-Welfare|author5=T. De Bie|author6=N. Mosdell|author7=J. Lewis|author8=N. Cristianini|title=Research methods in the age of digital journalism|journal=Digital Journalism|year=2012|doi=10.1080/21670811.2012.714928|volume=1|pages=102–116}}</ref>这篇论文中对于可读性、性别偏向和主题偏向等进行了分析。论文展示了不同的主题有不同的性别偏向和可读性,还探讨了通过分析Twitter内容来识别人群的情绪变化的可能性。<ref>{{cite conference|title=Effects of the Recession on Public Mood in the UK|author=T Lansdall-Welfare|author2=V Lampos|author3=N Cristianini|series=Mining Social Network Dynamics (MSND) session on Social Media Applications|doi=10.1145/2187980.2188264|conference=Proceedings of the 21st International Conference on World Wide Web|pages=1221–1226|location=New York, NY, USA|url=http://www.cs.bris.ac.uk/Publications/Papers/2001521.pdf}}</ref>
 
Flaounas et al.<ref>{{cite journal|author1=I. Flaounas|author2=O. Ali|author3=M. Turchi|author4=T. Lansdall-Welfare|author5=T. De Bie|author6=N. Mosdell|author7=J. Lewis|author8=N. Cristianini|title=Research methods in the age of digital journalism|journal=Digital Journalism|year=2012|doi=10.1080/21670811.2012.714928|volume=1|pages=102–116}}</ref>这篇论文中对于可读性、性别偏向和主题偏向等进行了分析。论文展示了不同的主题有不同的性别偏向和可读性,还探讨了通过分析Twitter内容来识别人群的情绪变化的可能性。<ref>{{cite conference|title=Effects of the Recession on Public Mood in the UK|author=T Lansdall-Welfare|author2=V Lampos|author3=N Cristianini|series=Mining Social Network Dynamics (MSND) session on Social Media Applications|doi=10.1145/2187980.2188264|conference=Proceedings of the 21st International Conference on World Wide Web|pages=1221–1226|location=New York, NY, USA|url=http://www.cs.bris.ac.uk/Publications/Papers/2001521.pdf}}</ref>
   −
Dzogang et al.,<ref>{{Cite journal|last=Dzogang|first=Fabon|last2=Lansdall-Welfare|first2=Thomas|last3=Team|first3=FindMyPast Newspaper|last4=Cristianini|first4=Nello|date=2016-11-08|title=Discovering Periodic Patterns in Historical News|journal=PLOS One|volume=11|issue=11|pages=e0165736|doi=10.1371/journal.pone.0165736|issn=1932-6203|pmc=5100883|pmid=27824911|bibcode=2016PLoSO..1165736D}}</ref> which showed how periodic structures can be automatically discovered in historical newspapers. A similar analysis was performed on social media, again revealing strongly periodic structures.<ref>是大规模历史新闻内容分析的先驱,他们的研究展示了周期性结构如何可以通过历史新闻内容自动识别出来。在社交媒体领域也有相似的分析,同样揭示了很强的周期结构。<ref>[https://core.ac.uk/download/pdf/83929129.pdf Seasonal Fluctuations in Collective Mood Revealed by Wikipedia Searches and Twitter Posts] F Dzogang, T Lansdall-Welfare, N Cristianini - 2016 IEEE International Conference on Data Mining, Workshop on ''Data Mining'' in Human Activity Analysis
+
Dzogang et al.<ref>{{Cite journal|last=Dzogang|first=Fabon|last2=Lansdall-Welfare|first2=Thomas|last3=Team|first3=FindMyPast Newspaper|last4=Cristianini|first4=Nello|date=2016-11-08|title=Discovering Periodic Patterns in Historical News|journal=PLOS One|volume=11|issue=11|pages=e0165736|doi=10.1371/journal.pone.0165736|issn=1932-6203|pmc=5100883|pmid=27824911|bibcode=2016PLoSO..1165736D}}</ref> 是大规模历史新闻内容分析的先驱,他们的研究展示了周期性结构如何可以通过历史新闻内容自动识别出来。在社交媒体领域也有相似的分析,同样揭示了很强的周期结构。<ref>[https://core.ac.uk/download/pdf/83929129.pdf Seasonal Fluctuations in Collective Mood Revealed by Wikipedia Searches and Twitter Posts] F Dzogang, T Lansdall-Welfare, N Cristianini - 2016 IEEE International Conference on Data Mining, Workshop on ''Data Mining'' in Human Activity Analysis
 
</ref>
 
</ref>
  
370

个编辑

导航菜单