更改

跳到导航 跳到搜索
删除50字节 、 2020年5月11日 (一) 11:56
第490行: 第490行:  
However,  for <math>m=1</math> it describes the winner takes it all mechanism as we find that almost <math>99\%</math> of the total nodes have degree one and one is super-rich in degree. As <math>m</math> value increases the disparity between the super rich and poor decreases and as <math>m>14</math> we find a transition from rich get super richer to rich get richer mechanism.
 
However,  for <math>m=1</math> it describes the winner takes it all mechanism as we find that almost <math>99\%</math> of the total nodes have degree one and one is super-rich in degree. As <math>m</math> value increases the disparity between the super rich and poor decreases and as <math>m>14</math> we find a transition from rich get super richer to rich get richer mechanism.
   −
=== Barabási–Albert (BA) 优先链接模型 ===
+
 
 
BA模型是一个随机网络模型,用于说明偏好依附效应(优先链接)preferential attachment或“富人越富”效应。 在这个模型中,边最有可能附着在度数较高的节点上。 这个网络从一个 m0节点的初始网络开始。 M0≥2,初始网络中每个节点的度至少为1,否则它将始终与网络的其余部分断开。
 
BA模型是一个随机网络模型,用于说明偏好依附效应(优先链接)preferential attachment或“富人越富”效应。 在这个模型中,边最有可能附着在度数较高的节点上。 这个网络从一个 m0节点的初始网络开始。 M0≥2,初始网络中每个节点的度至少为1,否则它将始终与网络的其余部分断开。
  
320

个编辑

导航菜单