更改

跳到导航 跳到搜索
删除245字节 、 2020年5月13日 (三) 14:15
无编辑摘要
第56行: 第56行:     
   
 
   
 +
--[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])下为旧版相对应的引言内容的参考 可进行一下整及或填充
   −
     −
'''Data science''' is an [[inter-disciplinary]] field that uses scientific methods, processes, algorithms and systems to extract [[knowledge]] and insights from many structural and [[unstructured data]].<ref>{{Cite journal | last1 = Dhar | first1 = V. | title = Data science and prediction | doi = 10.1145/2500499 | journal = Communications of the ACM | volume = 56 | issue = 12 | pages = 64–73 | year = 2013 | pmid =  | pmc =  | url = http://cacm.acm.org/magazines/2013/12/169933-data-science-and-prediction/fulltext | access-date = 2 September 2015 | archive-url = https://web.archive.org/web/20141109113411/http://cacm.acm.org/magazines/2013/12/169933-data-science-and-prediction/fulltext | archive-date = 9 November 2014 | url-status = live }}</ref><ref>{{cite web | url=http://simplystatistics.org/2013/12/12/the-key-word-in-data-science-is-not-data-it-is-science/ | title=The key word in "Data Science" is not Data, it is Science | publisher=Simply Statistics | date=2013-12-12 | author=[[Jeffrey T. Leek|Jeff Leek]] | access-date=1 January 2014 | archive-url=https://web.archive.org/web/20140102194117/http://simplystatistics.org/2013/12/12/the-key-word-in-data-science-is-not-data-it-is-science/ | archive-date=2 January 2014 | url-status=live }}</ref> Data science is related to [[data mining]] and [[big data]].
+
'''Data science''' is an [[inter-disciplinary]] field that uses scientific methods, processes, algorithms and systems to extract [[knowledge]] and insights from many structural and [[unstructured data]].<ref>{{Cite journal | last1 = Dhar | first1 = V. | title = Data science and prediction | doi = 10.1145/2500499 | journal = Communications of the ACM | volume = 56 | issue = 12 | pages = 64–73 | year = 2013 | pmid =  | pmc =  | url = http://cacm.acm.org/magazines/2013/12/169933-data-science-and-prediction/fulltext | access-date = 2 September 2015 | archive-url = https://web.archive.org/web/20141109113411/http://cacm.acm.org/magazines/2013/12/169933-data-science-and-prediction/fulltext | archive-date = 9 November 2014 | url-status = live }}</ref><ref>{{cite web | url=http://simplystatistics.org/2013/12/12/the-key-word-in-data-science-is-not-data-it-is-science/ | title=The key word in "Data Science" is not Data, it is Science | publisher=Simply Statistics | date=2013-12-12 | author=[[Jeffrey T. Leek|Jeff Leek]] | access-date=1 January 2014 | archive-url=https://web.archive.org/web/20140102194117/http://simplystatistics.org/2013/12/12/the-key-word-in-data-science-is-not-data-it-is-science/ | archive-date=2 January 2014 | url-status=live }}</ref> Data science is related to [[data mining]] and [[big data]]. Data science is a "concept to unify [[statistics]], [[data analysis]], [[machine learning]] and their related methods" in order to "understand and analyze actual phenomena" with data.<ref>{{Cite book|chapter-url=https://www.springer.com/book/9784431702085|title=Data Science, Classification, and Related Methods|last=Hayashi|first=Chikio|date=1998-01-01|publisher=Springer Japan|isbn=9784431702085|editor-last=Hayashi|editor-first=Chikio|series=Studies in Classification, Data Analysis, and Knowledge Organization|location=|pages=40–51|language=en|chapter=What is Data Science? Fundamental Concepts and a Heuristic Example|doi=10.1007/978-4-431-65950-1_3|editor-last2=Yajima|editor-first2=Keiji|editor-last3=Bock|editor-first3=Hans-Hermann|editor-last4=Ohsumi|editor-first4=Noboru|editor-last5=Tanaka|editor-first5=Yutaka|editor-last6=Baba|editor-first6=Yasumasa}}</ref> It uses techniques and theories drawn from many fields within the context of [[mathematics]], [[statistics]], [[computer science]], and [[information science]]. [[Turing award]] winner [[Jim Gray (computer scientist)|Jim Gray]] imagined data science as a "fourth paradigm" of science ([[Empirical research|empirical]], [[Basic research|theoretical]], [[computational science|computational]] and now data-driven) and asserted that "everything about science is changing because of the impact of information technology" and the [[information explosion|data deluge]].<ref name="TansleyTolle2009">{{cite book|author1=Stewart Tansley|author2=Kristin Michele Tolle|title=The Fourth Paradigm: Data-intensive Scientific Discovery|url=https://books.google.com/?id=oGs_AQAAIAAJ|year=2009|publisher=Microsoft Research|isbn=978-0-9825442-0-4|access-date=16 December 2016|archive-url=https://web.archive.org/web/20170320193019/https://books.google.com/books?id=oGs_AQAAIAAJ|archive-date=20 March 2017|url-status=live}}</ref><ref name="BellHey2009">{{cite journal|last1=Bell|first1=G.|last2=Hey|first2=T.|last3=Szalay|first3=A.|title=COMPUTER SCIENCE: Beyond the Data Deluge|journal=Science|volume=323|issue=5919|year=2009|pages=1297–1298|issn=0036-8075|doi=10.1126/science.1170411|pmid=19265007}}</ref>
 
  −
Data science is an inter-disciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from many structural and unstructured data. Data science is related to data mining and big data.
  −
 
  −
 
  −
  --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])下为旧版相对应的引言内容的参考 可进行一下整及或填充
  −
 
  −
 
  −
Data science is a "concept to unify [[statistics]], [[data analysis]], [[machine learning]] and their related methods" in order to "understand and analyze actual phenomena" with data.<ref>{{Cite book|chapter-url=https://www.springer.com/book/9784431702085|title=Data Science, Classification, and Related Methods|last=Hayashi|first=Chikio|date=1998-01-01|publisher=Springer Japan|isbn=9784431702085|editor-last=Hayashi|editor-first=Chikio|series=Studies in Classification, Data Analysis, and Knowledge Organization|location=|pages=40–51|language=en|chapter=What is Data Science? Fundamental Concepts and a Heuristic Example|doi=10.1007/978-4-431-65950-1_3|editor-last2=Yajima|editor-first2=Keiji|editor-last3=Bock|editor-first3=Hans-Hermann|editor-last4=Ohsumi|editor-first4=Noboru|editor-last5=Tanaka|editor-first5=Yutaka|editor-last6=Baba|editor-first6=Yasumasa}}</ref> It uses techniques and theories drawn from many fields within the context of [[mathematics]], [[statistics]], [[computer science]], and [[information science]]. [[Turing award]] winner [[Jim Gray (computer scientist)|Jim Gray]] imagined data science as a "fourth paradigm" of science ([[Empirical research|empirical]], [[Basic research|theoretical]], [[computational science|computational]] and now data-driven) and asserted that "everything about science is changing because of the impact of information technology" and the [[information explosion|data deluge]].<ref name="TansleyTolle2009">{{cite book|author1=Stewart Tansley|author2=Kristin Michele Tolle|title=The Fourth Paradigm: Data-intensive Scientific Discovery|url=https://books.google.com/?id=oGs_AQAAIAAJ|year=2009|publisher=Microsoft Research|isbn=978-0-9825442-0-4|access-date=16 December 2016|archive-url=https://web.archive.org/web/20170320193019/https://books.google.com/books?id=oGs_AQAAIAAJ|archive-date=20 March 2017|url-status=live}}</ref><ref name="BellHey2009">{{cite journal|last1=Bell|first1=G.|last2=Hey|first2=T.|last3=Szalay|first3=A.|title=COMPUTER SCIENCE: Beyond the Data Deluge|journal=Science|volume=323|issue=5919|year=2009|pages=1297–1298|issn=0036-8075|doi=10.1126/science.1170411|pmid=19265007}}</ref>
      
数据科学类似于[https://en.wikipedia.org/wiki/Data_mining 数据挖掘],是一个通过科学的方法、过程、算法和系统,从有结构或无结构的各种形式的[https://en.wikipedia.org/wiki/Data 数据]中提炼[https://en.wikipedia.org/wiki/Knowledge 知识]和见解的跨学科领域。
 
数据科学类似于[https://en.wikipedia.org/wiki/Data_mining 数据挖掘],是一个通过科学的方法、过程、算法和系统,从有结构或无结构的各种形式的[https://en.wikipedia.org/wiki/Data 数据]中提炼[https://en.wikipedia.org/wiki/Knowledge 知识]和见解的跨学科领域。
第93行: 第85行:  
数据科学的概念结合了统计学、数据分析、机器学习等相关方法,以便于借助数据理解和分析实际现象。
 
数据科学的概念结合了统计学、数据分析、机器学习等相关方法,以便于借助数据理解和分析实际现象。
 
<ref name="Hayashi" />
 
<ref name="Hayashi" />
它使用了来自[https://en.wikipedia.org/wiki/Mathematics 数学]、[https://en.wikipedia.org/wiki/Statistics 统计学]、[https://en.wikipedia.org/wiki/Information_science 信息科学]、[https://en.wikipedia.org/wiki/Computer_science 计算机科学]等许多学科领域的技术与理论。
+
它使用了从[https://en.wikipedia.org/wiki/Mathematics 数学]、[https://en.wikipedia.org/wiki/Statistics 统计学]、[https://en.wikipedia.org/wiki/Information_science 信息科学]、[https://en.wikipedia.org/wiki/Computer_science 计算机科学]等许多学科领域获得的技术与理论。
     
198

个编辑

导航菜单