第380行: |
第380行: |
| | | |
| | | |
− | ===避开障碍Barrier avoidance=== | + | ===避障Barrier avoidance=== |
| | | |
| When choosing the candidate generator {{code|neighbour()}} one must also try to reduce the number of "deep" local minima—states (or sets of connected states) that have much lower energy than all its neighbouring states. Such "closed [[drainage basin|catchment]] basins" of the energy function may trap the simulated annealing algorithm with high probability (roughly proportional to the number of states in the basin) and for a very long time (roughly exponential on the energy difference between the surrounding states and the bottom of the basin). | | When choosing the candidate generator {{code|neighbour()}} one must also try to reduce the number of "deep" local minima—states (or sets of connected states) that have much lower energy than all its neighbouring states. Such "closed [[drainage basin|catchment]] basins" of the energy function may trap the simulated annealing algorithm with high probability (roughly proportional to the number of states in the basin) and for a very long time (roughly exponential on the energy difference between the surrounding states and the bottom of the basin). |
第430行: |
第430行: |
| 为此,我们将<code>s</code>和<code>e</code> </code> 设置为<code>sbest</code>和<code>ebest</code>并可能重新启动退火时刻表。重新启动的决定可能基于几个标准。其中值得注意的有:基于固定步数的重启,基于当前能量是否高于目前获得的最佳能量,随机重启等。 | | 为此,我们将<code>s</code>和<code>e</code> </code> 设置为<code>sbest</code>和<code>ebest</code>并可能重新启动退火时刻表。重新启动的决定可能基于几个标准。其中值得注意的有:基于固定步数的重启,基于当前能量是否高于目前获得的最佳能量,随机重启等。 |
| | | |
− | ==Related methods== | + | ==相关算法 Related methods== |
| | | |
| * [[Metropolis–Hastings algorithm|Interacting Metropolis–Hasting algorithms]] (a.k.a. [[Particle filter|Sequential Monte Carlo]]<ref name=":3">{{Cite journal|title = Sequential Monte Carlo samplers - P. Del Moral - A. Doucet - A. Jasra - 2006 - Journal of the Royal Statistical Society: Series B (Statistical Methodology) - Wiley Online Library| doi=10.1111/j.1467-9868.2006.00553.x|volume=68| issue=3|journal=Journal of the Royal Statistical Society, Series B|pages=411–436|arxiv=cond-mat/0212648|year = 2006|last1 = Del Moral|first1 = Pierre| last2=Doucet| first2=Arnaud| last3=Jasra| first3=Ajay}}</ref>) combined simulated annealing moves with an acceptance-rejection of the best fitted individuals equipped with an interacting recycling mechanism. | | * [[Metropolis–Hastings algorithm|Interacting Metropolis–Hasting algorithms]] (a.k.a. [[Particle filter|Sequential Monte Carlo]]<ref name=":3">{{Cite journal|title = Sequential Monte Carlo samplers - P. Del Moral - A. Doucet - A. Jasra - 2006 - Journal of the Royal Statistical Society: Series B (Statistical Methodology) - Wiley Online Library| doi=10.1111/j.1467-9868.2006.00553.x|volume=68| issue=3|journal=Journal of the Royal Statistical Society, Series B|pages=411–436|arxiv=cond-mat/0212648|year = 2006|last1 = Del Moral|first1 = Pierre| last2=Doucet| first2=Arnaud| last3=Jasra| first3=Ajay}}</ref>) combined simulated annealing moves with an acceptance-rejection of the best fitted individuals equipped with an interacting recycling mechanism. |
第578行: |
第578行: |
| | | |
| | | |
− | ==Further reading== | + | ==进一步阅读 Further reading== |
| | | |
| *A. Das and B. K. Chakrabarti (Eds.), ''[ftp://nozdr.ru/biblio/kolxoz/M/MP/Das%20A.,%20Chakrabarti%20B.K.%20(eds.)%20Quantum%20Annealing%20and%20Related%20Optimization%20Methods%20(LNP0679,%20Springer,%202005)(384s)_MP_.pdf Quantum Annealing and Related Optimization Methods],'' Lecture Note in Physics, Vol. 679, Springer, Heidelberg (2005) | | *A. Das and B. K. Chakrabarti (Eds.), ''[ftp://nozdr.ru/biblio/kolxoz/M/MP/Das%20A.,%20Chakrabarti%20B.K.%20(eds.)%20Quantum%20Annealing%20and%20Related%20Optimization%20Methods%20(LNP0679,%20Springer,%202005)(384s)_MP_.pdf Quantum Annealing and Related Optimization Methods],'' Lecture Note in Physics, Vol. 679, Springer, Heidelberg (2005) |
第612行: |
第612行: |
| *模拟退火的自我指导课程维基学院项目。 | | *模拟退火的自我指导课程维基学院项目。 |
| *谷歌在叠加使用、不使用量子计算机的Ars技术中讨论了谷歌所使用的D波计算机可能实际上是一个高效的模拟退火协处理器的可能性。 | | *谷歌在叠加使用、不使用量子计算机的Ars技术中讨论了谷歌所使用的D波计算机可能实际上是一个高效的模拟退火协处理器的可能性。 |
| + | |
| + | |
| + | ==编者推荐== |
| + | |
| + | ===文章推荐=== |
| + | *[https://www.bilibili.com/read/cv4579973/ 建模算法入门笔记-模拟退火(SA)(附程序)] |
| + | *[http://arxiv.org/abs/2004.13514 模拟退火用于现实网络的树分解] |
| | | |
| {{Major subfields of optimization}} | | {{Major subfields of optimization}} |