更改

跳到导航 跳到搜索
删除1,149字节 、 2020年5月18日 (一) 15:31
第124行: 第124行:     
网络半径是另外一种测量网络图的方法,定义为网络中所有计算出来的最短路径中的最大值。它代表网络中两个最远节点之间的最短路径。或者说,只要计算出来网络中每个节点到其他所有节点的最短路径,网络半径就是这些路径中的最长路径的长度。网络半径是网络线性规模的的表示。假如网络的节点以A-B-C-D的方式连接,那么从A->D的路径长度3(3跳跃,3个连接)就是这个网络的半径。{{Fact|date=November 2019}}
 
网络半径是另外一种测量网络图的方法,定义为网络中所有计算出来的最短路径中的最大值。它代表网络中两个最远节点之间的最短路径。或者说,只要计算出来网络中每个节点到其他所有节点的最短路径,网络半径就是这些路径中的最长路径的长度。网络半径是网络线性规模的的表示。假如网络的节点以A-B-C-D的方式连接,那么从A->D的路径长度3(3跳跃,3个连接)就是这个网络的半径。{{Fact|date=November 2019}}
  −
=== Clustering coefficient ===
  −
The clustering coefficient is a measure of an "all-my-friends-know-each-other" property. This is sometimes described as the friends of my friends are my friends. More precisely, the clustering coefficient of a node is the ratio of existing links connecting a node's neighbors to each other to the maximum possible number of such links. The clustering coefficient for the entire network is the average of the clustering coefficients of all the nodes. A high clustering coefficient for a network is another indication of a [[Small-world experiment|small world]].
  −
  −
The clustering coefficient of the <math>i</math>'th node is
  −
:<math>C_i = {2e_i\over k_i{(k_i - 1)}}\,,</math>
  −
where <math>k_i</math> is the number of neighbours of the <math>i</math>'th node, and <math>e_i</math> is the number of connections between these neighbours. The maximum possible number of connections between neighbors is, then,
  −
:<math>{\binom {k}{2}} = {{k(k-1)}\over 2}\,.</math>
  −
  −
From a probabalistic standpoint, the expected local clustering coefficient is the likelihood of a link existing between two arbitrary neighbors of the same node.
      
===聚集系数===
 
===聚集系数===
198

个编辑

导航菜单