更改

跳到导航 跳到搜索
删除111字节 、 2020年5月19日 (二) 16:50
第102行: 第102行:  
在连边之间没有交集的情况下,网络的密度 <math>D</math> 被定义为在具有 <math>N</math> 个节点的网络中,连边数量 <math>E</math> 与可能的连边数的比率,由没有交集连边的图给出 <math>(E_{\max}=3N-6)</math>,则 <math>D = \frac{E-N+1}{2N-5}.</math>
 
在连边之间没有交集的情况下,网络的密度 <math>D</math> 被定义为在具有 <math>N</math> 个节点的网络中,连边数量 <math>E</math> 与可能的连边数的比率,由没有交集连边的图给出 <math>(E_{\max}=3N-6)</math>,则 <math>D = \frac{E-N+1}{2N-5}.</math>
   −
=== 平均度 Average degree ===
+
=== 平均度 ===
    
The degree <math>k</math> of a node is the number of edges connected to it. Closely related to the density of a network is the average degree, <math>\langle k\rangle = \tfrac{2E}{N}</math> (or, in the case of directed graphs, <math>\langle k\rangle = \tfrac{E}{N}</math>, the former factor of 2 arising from each edge in an undirected graph contributing to the degree of two distinct vertices). In the [[Erdős–Rényi model | ER random graph model]] (<math>G(N,p)</math>) we can compute the expected value of  <math>\langle k \rangle </math> (equal to the expected value of <math>k</math> of an arbitrary vertex): a random vertex has <math>N-1</math> other vertices in the network available, and with probability <math>p</math>, connects to each. Thus, <math>\mathbb{E}[\langle k \rangle]=\mathbb{E}[k]= p(N-1)</math>.
 
The degree <math>k</math> of a node is the number of edges connected to it. Closely related to the density of a network is the average degree, <math>\langle k\rangle = \tfrac{2E}{N}</math> (or, in the case of directed graphs, <math>\langle k\rangle = \tfrac{E}{N}</math>, the former factor of 2 arising from each edge in an undirected graph contributing to the degree of two distinct vertices). In the [[Erdős–Rényi model | ER random graph model]] (<math>G(N,p)</math>) we can compute the expected value of  <math>\langle k \rangle </math> (equal to the expected value of <math>k</math> of an arbitrary vertex): a random vertex has <math>N-1</math> other vertices in the network available, and with probability <math>p</math>, connects to each. Thus, <math>\mathbb{E}[\langle k \rangle]=\mathbb{E}[k]= p(N-1)</math>.
   −
一个节点连接的边数称为节点的度<math>k</math>,网络中的密度和节点的度有密切的关系,网络中所有节点的度的平均值称为网络的平均度,其中平均度<math>\langle k\rangle = \tfrac{2E}{N}</math> (或者在一些有向图中, <math>\langle k\rangle = \tfrac{E}{N}</math>,分子中多了一个2倍的关系,是因为有向图中节点的度是无向图中节点度的2倍),在[[Erdős–Rényi随机图模型]]中,(<math>G(N,p)</math>) ,我们可以计算<math>\langle k \rangle </math> 的值,(等于<math>k</math>个随机点的期望值),一个随机点与其他<math>N-1</math> 点相连,假设这些点两两相连的概率为<math>p</math>,因为可以计算度的期望:<math>\mathbb{E}[\langle k \rangle]=\mathbb{E}[k]= p(N-1)</math>.
+
一个节点所连接的边数被称为节点的度 <math>k</math> 。与网络密度密切相关的是平均度, <math>\langle k\rangle = \tfrac{2E}{N}</math> (或者在一些有向图中, <math>\langle k\rangle = \tfrac{E}{N}</math>,前一个式子中多了一个2倍关系,是因为无向图中的每一条边形成了两个不同顶点的度)。在[[ER随机图模型]](<math>G(N,p)</math>) 中,我们可以计算<math>\langle k \rangle </math> 的期望值(等于随机点的期望值 <math>k</math>):一个随机点在网络中有 <math>N-1</math> 个其他可用顶点两两相连,相连的概率为<math>p</math>。因此,<math>\mathbb{E}[\langle k \rangle]=\mathbb{E}[k]= p(N-1)</math>
 
      
=== 平均最短路径长度(特征路径长度) ===
 
=== 平均最短路径长度(特征路径长度) ===
198

个编辑

导航菜单