第114行: |
第114行: |
| [[File:Logistic Map Bifurcation Diagram, Matplotlib.svg|thumb|right|分叉图的的逻辑映射<span style="white-space: nowrap;">''x'' → ''r'' ''x'' (1 – ''x'').</span>每个垂直切片显示一个特定值 ''r''的吸引子。 该图显示了随着 ''r''的增加周期翻倍,最终产生混沌。]] | | [[File:Logistic Map Bifurcation Diagram, Matplotlib.svg|thumb|right|分叉图的的逻辑映射<span style="white-space: nowrap;">''x'' → ''r'' ''x'' (1 – ''x'').</span>每个垂直切片显示一个特定值 ''r''的吸引子。 该图显示了随着 ''r''的增加周期翻倍,最终产生混沌。]] |
| | | |
− | 离散混沌系统,如 logistic 映射,无论其维数如何,都可以表现出奇怪的吸引子。具有抛物线最大值和[[费根鲍姆常数 Feigenbaum constants]]<math>\delta=4.664201...</math>,<math>\alpha=2.502907...</math> <ref>[http://chaosbook.org/extras/mjf/LA-6816-PR.pdf Feigenbaum, M. J. (1976) "Universality in complex discrete dynamics", Los Alamos Theoretical Division Annual Report 1975-1976]</ref><ref name="Feigenbaum 25–52">{{cite journal |first=Mitchell |last=Feigenbaum |title=Quantitative universality for a class of nonlinear transformations |journal=Journal of Statistical Physics |volume=19 |issue=1 |pages=25–52 |date=July 1978 |doi=10.1007/BF01020332 |bibcode=1978JSP....19...25F|citeseerx=10.1.1.418.9339 }}</ref>的一维映射的普适性是显而易见的,将映射作为离散激光动力学的玩具模型提出: | + | 离散混沌系统,如 logistic 映射,无论其维数如何,都可以表现出奇怪的吸引子。具有抛物线最大值和[[费根鲍姆常数 Feigenbaum constants]]<math>\delta=4.664201...</math>,<math>\alpha=2.502907...</math> <ref>[http://chaosbook.org/extras/mjf/LA-6816-PR.pdf Feigenbaum, M. J. (1976) "Universality in complex discrete dynamics", Los Alamos Theoretical Division Annual Report 1975-1976]</ref><ref name="Feigenbaum 25–52">{{cite journal |first=Mitchell |last=Feigenbaum |title=Quantitative universality for a class of nonlinear transformations |journal=Journal of Statistical Physics |volume=19 |issue=1 |pages=25–52 |date=July 1978 |doi=10.1007/BF01020332 |bibcode=1978JSP....19...25F|citeseerx=10.1.1.418.9339 }}</ref>的一维映射的普适性是显而易见的,将映射作为离散激光动力学的玩具模型提出::<math> x \rightarrow G x (1 - \mathrm{tanh} (x))</math>,其中,<math>x</math>代表电场幅度 <math>G</math> <ref name="Okulov, A Yu 1986">{{cite journal |title=Space–temporal behavior of a light pulse propagating in a nonlinear nondispersive medium|journal=J. Opt. Soc. Am. B |volume=3 |issue=5 |pages=741–746 |year=1986 |last1= Okulov |first1=A Yu |last2=Oraevskiĭ |first2=A N |doi=10.1364/JOSAB.3.000741|bibcode=1986OSAJB...3..741O}}</ref>为激光增益分岔参数。<math>G</math>在区间<math>[0, \infty)</math>的逐渐增加使动力学从正规变成了混沌,<ref name="Okulov, A Yu 1986">{{cite journal |title=Space–temporal behavior of a light pulse propagating in a nonlinear nondispersive medium|journal=J. Opt. Soc. Am. B |volume=3 |issue=5 |pages=741–746 |year=1986 |last1= Okulov |first1=A Yu |last2=Oraevskiĭ |first2=A N |doi=10.1364/JOSAB.3.000741 |
− | | |
− | | |
− | :<math> x \rightarrow G x (1 - \mathrm{tanh} (x))</math>, | |
− | | |
− | | |
− | :<math> x \rightarrow G x (1 - \mathrm{tanh} (x))</math>,
| |
− | | |
− | | |
− | :(1- mathrm { tanh }(x)) / math,
| |
− | | |
− | | |
− | 其中,<math>x</math>代表电场幅度 <math>G</math> <ref name="Okulov, A Yu 1986">{{cite journal |title=Space–temporal behavior of a light pulse propagating in a nonlinear nondispersive medium|journal=J. Opt. Soc. Am. B |volume=3 |issue=5 |pages=741–746 |year=1986 |last1= Okulov |first1=A Yu |last2=Oraevskiĭ |first2=A N |doi=10.1364/JOSAB.3.000741|bibcode=1986OSAJB...3..741O}}</ref>为激光增益分岔参数。<math>G</math>在区间<math>[0, \infty)</math>的逐渐增加使动力学从正规变成了混沌,<ref name="Okulov, A Yu 1986">{{cite journal |title=Space–temporal behavior of a light pulse propagating in a nonlinear nondispersive medium|journal=J. Opt. Soc. Am. B |volume=3 |issue=5 |pages=741–746 |year=1986 |last1= Okulov |first1=A Yu |last2=Oraevskiĭ |first2=A N |doi=10.1364/JOSAB.3.000741 | |
| |bibcode=1986OSAJB...3..741O}}</ref><ref name="Okulov, A Yu 1984">{{cite journal |doi=10.1070/QE1984v014n09ABEH006171 | | |bibcode=1986OSAJB...3..741O}}</ref><ref name="Okulov, A Yu 1984">{{cite journal |doi=10.1070/QE1984v014n09ABEH006171 |
| |title=Regular and stochastic self-modulation in a ring laser with nonlinear element | | |title=Regular and stochastic self-modulation in a ring laser with nonlinear element |