第96行: |
第96行: |
| | | |
| | | |
− | Sharkovskii 的定理是 Li 和 Yorke <ref>{{cite journal|last1=Li |first1=T.Y. |last2=Yorke |first2=J.A. |title=Period Three Implies Chaos |journal=[[American Mathematical Monthly]] |volume=82 |pages=985–92 |year=1975 |url=http://pb.math.univ.gda.pl/chaos/pdf/li-yorke.pdf |doi=10.2307/2318254 |issue=10 |bibcode=1975AmMM...82..985L |url-status=dead |archiveurl=https://web.archive.org/web/20091229042210/http://pb.math.univ.gda.pl/chaos/pdf/li-yorke.pdf |archivedate=2009-12-29 |jstor=2318254 |citeseerx=10.1.1.329.5038 }}</ref> (1975)证明的基础,证明了任何一维的连续系统,只要表现出周期为三的规则周期,也会表现出其他长度的规则周期,以及完全混沌的轨道。 | + | Sharkovskii 的定理是 Li 和 Yorke <ref>{{cite journal|last1=Li |first1=T.Y. |last2=Yorke |first2=J.A. |title=Period Three Implies Chaos |journal=American Mathematical Monthly|volume=82 |pages=985–92 |year=1975 |url=http://pb.math.univ.gda.pl/chaos/pdf/li-yorke.pdf |doi=10.2307/2318254 |issue=10 |bibcode=1975AmMM...82..985L |url-status=dead |archiveurl=https://web.archive.org/web/20091229042210/http://pb.math.univ.gda.pl/chaos/pdf/li-yorke.pdf |archivedate=2009-12-29 |jstor=2318254 |citeseerx=10.1.1.329.5038 }}</ref> (1975)证明的基础,证明了任何一维的连续系统,只要表现出周期为三的规则周期,也会表现出其他长度的规则周期,以及完全混沌的轨道。 |
| | | |
| | | |
第132行: |
第132行: |
| | | |
| | | |
− | <math>x</math>,<math>y</math>,<math>z</math>组成系统状态,<math>t</math>是时间,<math>\sigma</math>,<math>\rho</math>,<math>\beta</math>是系统参数。右边的五项是线性项,两项是二次项,总共有七项。另一个著名的混沌吸引子是由 r ssler 方程产生的,它只有七个非线性项中的一个。斯普洛特 Sprott<ref>{{cite journal|last=Sprott |first=J.C.|year=1997|title=Simplest dissipative chaotic flow|journal=[[Physics Letters A]]|volume=228|issue=4–5 |pages=271–274|doi=10.1016/S0375-9601(97)00088-1|bibcode = 1997PhLA..228..271S }}</ref>发现了一个只有五个项的三维系统,其中只有一个非线性项,对于某些参数值呈现混沌。张和Heidel<ref>{{cite journal|last=Fu |first=Z. |last2=Heidel |first2=J.|year=1997|title=Non-chaotic behaviour in three-dimensional quadratic systems|journal=[[Nonlinearity (journal)|Nonlinearity]]|volume=10|issue=5 |pages=1289–1303|doi=10.1088/0951-7715/10/5/014|bibcode = 1997Nonli..10.1289F }}</ref><ref>{{cite journal|last=Heidel |first=J. |last2=Fu |first2=Z.|year=1999|title=Nonchaotic behaviour in three-dimensional quadratic systems II. The conservative case|journal=Nonlinearity|volume=12|issue=3 |pages=617–633|doi=10.1088/0951-7715/12/3/012|bibcode = 1999Nonli..12..617H }}</ref> 表明,至少对于耗散和保守的二次系统,右边只有三个或四个项的三维二次系统不能表现出混沌行为。原因很简单,这类系统的解是渐近于二维表面的,因此解的行为是良好的。 | + | <math>x</math>,<math>y</math>,<math>z</math>组成系统状态,<math>t</math>是时间,<math>\sigma</math>,<math>\rho</math>,<math>\beta</math>是系统参数。右边的五项是线性项,两项是二次项,总共有七项。另一个著名的混沌吸引子是由 r ssler 方程产生的,它只有七个非线性项中的一个。斯普洛特 Sprott<ref>{{cite journal|last=Sprott |first=J.C.|year=1997|title=Simplest dissipative chaotic flow|journal=Physics Letters A|volume=228|issue=4–5 |pages=271–274|doi=10.1016/S0375-9601(97)00088-1|bibcode = 1997PhLA..228..271S }}</ref>发现了一个只有五个项的三维系统,其中只有一个非线性项,对于某些参数值呈现混沌。张和Heidel<ref>{{cite journal|last=Fu |first=Z. |last2=Heidel |first2=J.|year=1997|title=Non-chaotic behaviour in three-dimensional quadratic systems|journal=Nonlinearity (journal)|volume=10|issue=5 |pages=1289–1303|doi=10.1088/0951-7715/10/5/014|bibcode = 1997Nonli..10.1289F }}</ref><ref>{{cite journal|last=Heidel |first=J. |last2=Fu |first2=Z.|year=1999|title=Nonchaotic behaviour in three-dimensional quadratic systems II. The conservative case|journal=Nonlinearity|volume=12|issue=3 |pages=617–633|doi=10.1088/0951-7715/12/3/012|bibcode = 1999Nonli..12..617H }}</ref> 表明,至少对于耗散和保守的二次系统,右边只有三个或四个项的三维二次系统不能表现出混沌行为。原因很简单,这类系统的解是渐近于二维表面的,因此解的行为是良好的。 |
| | | |
| | | |
第209行: |
第209行: |
| [[File:Barnsley fern plotted with VisSim.png|thumb|upright|巴恩斯利蕨类植物是用混沌游戏创造出来的。可以通过迭代函数系统(IFS)重建自然形式(蕨类植物,云朵,山脉等)。]] | | [[File:Barnsley fern plotted with VisSim.png|thumb|upright|巴恩斯利蕨类植物是用混沌游戏创造出来的。可以通过迭代函数系统(IFS)重建自然形式(蕨类植物,云朵,山脉等)。]] |
| | | |
− | 亨利·庞加莱 Henri Poincaré是混沌理论的早期支持者。19世纪80年代,在研究三体时,他发现有些轨道是非周期性的,但不会永远增加,也不会接近一个固定点。<ref>{{cite journal |author=Poincaré, Jules Henri |title=Sur le problème des trois corps et les équations de la dynamique. Divergence des séries de M. Lindstedt |journal=Acta Mathematica |volume=13 |issue=1–2 |pages=1–270 |year=1890 |doi=10.1007/BF02392506 |doi-access=free }}</ref><ref>{{Cite book|title=The three-body problem and the equations of dynamics : Poincaré's foundational work on dynamical systems theory|last=Poincaré|first=J. Henri|publisher=Springer International Publishing|others=Popp, Bruce D. (Translator)|year=2017|isbn=9783319528984|location=Cham, Switzerland|pages=|oclc=987302273}}</ref><ref>{{cite book |author1=Diacu, Florin |author2=Holmes, Philip |title=Celestial Encounters: The Origins of Chaos and Stability |publisher=[[Princeton University Press]] |year=1996 }}</ref>1898年,雅克·哈达马德 Jacques Hadamard发表了一篇影响深远的论文,研究自由粒子在恒负曲率表面上无摩擦滑行的混沌运动,这篇论文被称为“ Hadamard 台球”。<ref>{{cite journal|first = Jacques|last = Hadamard|year = 1898|title = Les surfaces à courbures opposées et leurs lignes géodesiques|journal = Journal de Mathématiques Pures et Appliquées|volume = 4|pages = 27–73}}</ref>Hadamard能够证明所有的轨道都是不稳定的,所有的粒子轨道都以指数形式彼此分离,李亚普诺夫指数为正。 | + | 亨利·庞加莱 Henri Poincaré是混沌理论的早期支持者。19世纪80年代,在研究三体时,他发现有些轨道是非周期性的,但不会永远增加,也不会接近一个固定点。<ref>{{cite journal |author=Poincaré, Jules Henri |title=Sur le problème des trois corps et les équations de la dynamique. Divergence des séries de M. Lindstedt |journal=Acta Mathematica |volume=13 |issue=1–2 |pages=1–270 |year=1890 |doi=10.1007/BF02392506 |doi-access=free }}</ref><ref>{{Cite book|title=The three-body problem and the equations of dynamics : Poincaré's foundational work on dynamical systems theory|last=Poincaré|first=J. Henri|publisher=Springer International Publishing|others=Popp, Bruce D. (Translator)|year=2017|isbn=9783319528984|location=Cham, Switzerland|pages=|oclc=987302273}}</ref><ref>{{cite book |author1=Diacu, Florin |author2=Holmes, Philip |title=Celestial Encounters: The Origins of Chaos and Stability |publisher=Princeton University Press|year=1996 }}</ref>1898年,雅克·哈达马德 Jacques Hadamard发表了一篇影响深远的论文,研究自由粒子在恒负曲率表面上无摩擦滑行的混沌运动,这篇论文被称为“ Hadamard 台球”。<ref>{{cite journal|first = Jacques|last = Hadamard|year = 1898|title = Les surfaces à courbures opposées et leurs lignes géodesiques|journal = Journal de Mathématiques Pures et Appliquées|volume = 4|pages = 27–73}}</ref>Hadamard能够证明所有的轨道都是不稳定的,所有的粒子轨道都以指数形式彼此分离,李亚普诺夫指数为正。 |
| | | |
| | | |
− | 混沌理论起源于遍历理论。后来的研究,也是关于非线性微分方程的主题,由乔治·戴维·伯克霍夫 George David Birkhoff,<ref>George D. Birkhoff, ''Dynamical Systems,'' vol. 9 of the American Mathematical Society Colloquium Publications (Providence, Rhode Island: American Mathematical Society, 1927)</ref>安德雷·柯尔莫哥洛夫 Andrey Nikolaevich Kolmogorov,<ref>{{cite journal| last=Kolmogorov | first=Andrey Nikolaevich | authorlink=Andrey Nikolaevich Kolmogorov | year=1941 | title=Local structure of turbulence in an incompressible fluid for very large Reynolds numbers | journal=[[Doklady Akademii Nauk SSSR]] | volume=30 | issue=4 | pages=301–5 |bibcode = 1941DoSSR..30..301K | title-link=turbulence }} Reprinted in: {{cite journal |journal=Proceedings of the Royal Society A |volume=434 |pages=9–13 |year=1991 |doi=10.1098/rspa.1991.0075 |title=The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers |last1=Kolmogorov |first1=A. N. |issue=1890 |bibcode=1991RSPSA.434....9K|url=https://www.semanticscholar.org/paper/202870134de1f771f678cb540d2ea082b1ab9c5d }}</ref><ref>{{cite journal| last=Kolmogorov | first=A. N. | year=1941 | title=On degeneration of isotropic turbulence in an incompressible viscous liquid | journal=Doklady Akademii Nauk SSSR | volume=31 | issue=6 | pages=538–540}} Reprinted in: {{cite journal |journal=Proceedings of the Royal Society A |volume=434 |pages=15–17 |year=1991 |doi=10.1098/rspa.1991.0076 |title=Dissipation of Energy in the Locally Isotropic Turbulence |last1=Kolmogorov |first1=A. N. |issue=1890 |bibcode=1991RSPSA.434...15K|url=https://www.semanticscholar.org/paper/5874066f6114b679a74fc8edc9db03e48d22251c }}</ref><ref>{{cite book| last=Kolmogorov | first=A. N. | year=1954 | title=Preservation of conditionally periodic movements with small change in the Hamiltonian function | journal=Doklady Akademii Nauk SSSR | volume=98 | pages=527–530| bibcode=1979LNP....93...51K| doi=10.1007/BFb0021737| series=Lecture Notes in Physics| isbn=978-3-540-09120-2}} See also [[Kolmogorov–Arnold–Moser theorem]]</ref>玛丽·露西·卡特赖特 Mary Lucy Cartwright 和约翰·恩瑟·李特尔伍德 John Edensor Littlewood,<ref>{{cite journal |last1=Cartwright |first1=Mary L. |last2=Littlewood |first2=John E. |title=On non-linear differential equations of the second order, I: The equation ''y''" + ''k''(1−''y''<sup>2</sup>)''y<nowiki>'</nowiki>'' + ''y'' = ''b''λkcos(λ''t'' + ''a''), ''k'' large |journal=Journal of the London Mathematical Society |volume=20 |pages=180–9 |year=1945 |doi=10.1112/jlms/s1-20.3.180 |issue=3 }} See also: [[Van der Pol oscillator]]</ref>和[[斯蒂芬·斯梅尔 Stephen Smale]]进行。<ref>{{cite journal |author=Smale, Stephen |title=Morse inequalities for a dynamical system |journal=Bulletin of the American Mathematical Society |volume=66 |pages=43–49 |date=January 1960 |doi=10.1090/S0002-9904-1960-10386-2 |bibcode=1994BAMaS..30..205W |doi-access=free }}</ref>除了Smale,这些研究都直接受到物理学的启发: Birkhoff的三体,Kolmogorov 的湍流和天文学问题,Cartwright和Littlewood的无线电工程。虽然还没有观察到混沌的行星运动,但实验人员已经遇到了流体运动中的湍流和无线电电路中的非周期性振荡,而没有一个理论来解释他们所看到的。 | + | 混沌理论起源于遍历理论。后来的研究,也是关于非线性微分方程的主题,由乔治·戴维·伯克霍夫 George David Birkhoff,<ref>George D. Birkhoff, ''Dynamical Systems,'' vol. 9 of the American Mathematical Society Colloquium Publications (Providence, Rhode Island: American Mathematical Society, 1927)</ref>安德雷·柯尔莫哥洛夫 Andrey Nikolaevich Kolmogorov,<ref>{{cite journal| last=Kolmogorov | first=Andrey Nikolaevich | authorlink=Andrey Nikolaevich Kolmogorov | year=1941 | title=Local structure of turbulence in an incompressible fluid for very large Reynolds numbers | journal=Doklady Akademii Nauk SSSR | volume=30 | issue=4 | pages=301–5 |bibcode = 1941DoSSR..30..301K | title-link=turbulence }} Reprinted in: {{cite journal |journal=Proceedings of the Royal Society A |volume=434 |pages=9–13 |year=1991 |doi=10.1098/rspa.1991.0075 |title=The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers |last1=Kolmogorov |first1=A. N. |issue=1890 |bibcode=1991RSPSA.434....9K|url=https://www.semanticscholar.org/paper/202870134de1f771f678cb540d2ea082b1ab9c5d }}</ref><ref>{{cite journal| last=Kolmogorov | first=A. N. | year=1941 | title=On degeneration of isotropic turbulence in an incompressible viscous liquid | journal=Doklady Akademii Nauk SSSR | volume=31 | issue=6 | pages=538–540}} Reprinted in: {{cite journal |journal=Proceedings of the Royal Society A |volume=434 |pages=15–17 |year=1991 |doi=10.1098/rspa.1991.0076 |title=Dissipation of Energy in the Locally Isotropic Turbulence |last1=Kolmogorov |first1=A. N. |issue=1890 |bibcode=1991RSPSA.434...15K|url=https://www.semanticscholar.org/paper/5874066f6114b679a74fc8edc9db03e48d22251c }}</ref><ref>{{cite book| last=Kolmogorov | first=A. N. | year=1954 | title=Preservation of conditionally periodic movements with small change in the Hamiltonian function | journal=Doklady Akademii Nauk SSSR | volume=98 | pages=527–530| bibcode=1979LNP....93...51K| doi=10.1007/BFb0021737| series=Lecture Notes in Physics| isbn=978-3-540-09120-2}} See also [[Kolmogorov–Arnold–Moser theorem]]</ref>玛丽·露西·卡特赖特 Mary Lucy Cartwright 和约翰·恩瑟·李特尔伍德 John Edensor Littlewood,<ref>{{cite journal |last1=Cartwright |first1=Mary L. |last2=Littlewood |first2=John E. |title=On non-linear differential equations of the second order, I: The equation ''y''" + ''k''(1−''y''<sup>2</sup>)''y<nowiki>'</nowiki>'' + ''y'' = ''b''λkcos(λ''t'' + ''a''), ''k'' large |journal=Journal of the London Mathematical Society |volume=20 |pages=180–9 |year=1945 |doi=10.1112/jlms/s1-20.3.180 |issue=3 }} See also: [[Van der Pol oscillator]]</ref>和[[斯蒂芬·斯梅尔 Stephen Smale]]进行。<ref>{{cite journal |author=Smale, Stephen |title=Morse inequalities for a dynamical system |journal=Bulletin of the American Mathematical Society |volume=66 |pages=43–49 |date=January 1960 |doi=10.1090/S0002-9904-1960-10386-2 |bibcode=1994BAMaS..30..205W |doi-access=free }}</ref>除了Smale,这些研究都直接受到物理学的启发: Birkhoff的三体,Kolmogorov 的湍流和天文学问题,Cartwright和Littlewood的无线电工程。虽然还没有观察到混沌的行星运动,但实验人员已经遇到了流体运动中的湍流和无线电电路中的非周期性振荡,而没有一个理论来解释他们所看到的。 |
| | | |
| | | |