− | 混沌理论起源于遍历理论。后来的研究,也是关于非线性微分方程的主题,由乔治·戴维·伯克霍夫 George David Birkhoff,<ref>George D. Birkhoff, ''Dynamical Systems,'' vol. 9 of the American Mathematical Society Colloquium Publications (Providence, Rhode Island: American Mathematical Society, 1927)</ref>安德雷·柯尔莫哥洛夫 Andrey Nikolaevich Kolmogorov,<ref>{{cite journal| last=Kolmogorov | first=Andrey Nikolaevich |year=1941 | title=Local structure of turbulence in an incompressible fluid for very large Reynolds numbers | journal=Doklady Akademii Nauk SSSR | volume=30 | issue=4 | pages=301–5 |bibcode = 1941DoSSR..30..301K | title-link=turbulence }} Reprinted in: {{cite journal |journal=Proceedings of the Royal Society A |volume=434 |pages=9–13 |year=1991 |doi=10.1098/rspa.1991.0075 |title=The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers |last1=Kolmogorov |first1=A. N. |issue=1890 |bibcode=1991RSPSA.434....9K|url=https://www.semanticscholar.org/paper/202870134de1f771f678cb540d2ea082b1ab9c5d }}</ref><ref>{{cite journal| last=Kolmogorov | first=A. N. | year=1941 | title=On degeneration of isotropic turbulence in an incompressible viscous liquid | journal=Doklady Akademii Nauk SSSR | volume=31 | issue=6 | pages=538–540}} Reprinted in: {{cite journal |journal=Proceedings of the Royal Society A |volume=434 |pages=15–17 |year=1991 |doi=10.1098/rspa.1991.0076 |title=Dissipation of Energy in the Locally Isotropic Turbulence |last1=Kolmogorov |first1=A. N. |issue=1890 |bibcode=1991RSPSA.434...15K|url=https://www.semanticscholar.org/paper/5874066f6114b679a74fc8edc9db03e48d22251c }}</ref><ref>{{cite book| last=Kolmogorov | first=A. N. | year=1954 | title=Preservation of conditionally periodic movements with small change in the Hamiltonian function | journal=Doklady Akademii Nauk SSSR | volume=98 | pages=527–530| bibcode=1979LNP....93...51K| doi=10.1007/BFb0021737| series=Lecture Notes in Physics| isbn=978-3-540-09120-2}} See also [[Kolmogorov–Arnold–Moser theorem]]</ref>玛丽·露西·卡特赖特 Mary Lucy Cartwright 和约翰·恩瑟·李特尔伍德 John Edensor Littlewood,<ref>{{cite journal |last1=Cartwright |first1=Mary L. |last2=Littlewood |first2=John E. |title=On non-linear differential equations of the second order, I: The equation ''y''" + ''k''(1−''y''<sup>2</sup>)''y<nowiki>'</nowiki>'' + ''y'' = ''b''λkcos(λ''t'' + ''a''), ''k'' large |journal=Journal of the London Mathematical Society |volume=20 |pages=180–9 |year=1945 |doi=10.1112/jlms/s1-20.3.180 |issue=3 }} See also: [[Van der Pol oscillator]]</ref>和[[斯蒂芬·斯梅尔 Stephen Smale]]进行。<ref>{{cite journal |author=Smale, Stephen |title=Morse inequalities for a dynamical system |journal=Bulletin of the American Mathematical Society |volume=66 |pages=43–49 |date=January 1960 |doi=10.1090/S0002-9904-1960-10386-2 |bibcode=1994BAMaS..30..205W |doi-access=free }}</ref>除了Smale,这些研究都直接受到物理学的启发: Birkhoff的三体,Kolmogorov 的湍流和天文学问题,Cartwright和Littlewood的无线电工程。虽然还没有观察到混沌的行星运动,但实验人员已经遇到了流体运动中的湍流和无线电电路中的非周期性振荡,而没有一个理论来解释他们所看到的。 | + | 混沌理论起源于遍历理论。后来的研究,也是关于非线性微分方程的主题,由乔治·戴维·伯克霍夫 George David Birkhoff,<ref>George D. Birkhoff, ''Dynamical Systems,'' vol. 9 of the American Mathematical Society Colloquium Publications (Providence, Rhode Island: American Mathematical Society, 1927)</ref>安德雷·柯尔莫哥洛夫 Andrey Nikolaevich Kolmogorov,<ref>{{cite journal| last=Kolmogorov | first=Andrey Nikolaevich |year=1941 | title=Local structure of turbulence in an incompressible fluid for very large Reynolds numbers | journal=Doklady Akademii Nauk SSSR | volume=30 | issue=4 | pages=301–5 |bibcode = 1941DoSSR..30..301K}} Reprinted in: {{cite journal |journal=Proceedings of the Royal Society A |volume=434 |pages=9–13 |year=1991 |doi=10.1098/rspa.1991.0075 |title=The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers |last1=Kolmogorov |first1=A. N. |issue=1890 |bibcode=1991RSPSA.434....9K|url=https://www.semanticscholar.org/paper/202870134de1f771f678cb540d2ea082b1ab9c5d }}</ref><ref>{{cite journal| last=Kolmogorov | first=A. N. | year=1941 | title=On degeneration of isotropic turbulence in an incompressible viscous liquid | journal=Doklady Akademii Nauk SSSR | volume=31 | issue=6 | pages=538–540}} Reprinted in: {{cite journal |journal=Proceedings of the Royal Society A |volume=434 |pages=15–17 |year=1991 |doi=10.1098/rspa.1991.0076 |title=Dissipation of Energy in the Locally Isotropic Turbulence |last1=Kolmogorov |first1=A. N. |issue=1890 |bibcode=1991RSPSA.434...15K|url=https://www.semanticscholar.org/paper/5874066f6114b679a74fc8edc9db03e48d22251c }}</ref><ref>{{cite book| last=Kolmogorov | first=A. N. | year=1954 | title=Preservation of conditionally periodic movements with small change in the Hamiltonian function | journal=Doklady Akademii Nauk SSSR | volume=98 | pages=527–530| bibcode=1979LNP....93...51K| doi=10.1007/BFb0021737| series=Lecture Notes in Physics| isbn=978-3-540-09120-2}} See also [[Kolmogorov–Arnold–Moser theorem]]</ref>玛丽·露西·卡特赖特 Mary Lucy Cartwright 和约翰·恩瑟·李特尔伍德 John Edensor Littlewood,<ref>{{cite journal |last1=Cartwright |first1=Mary L. |last2=Littlewood |first2=John E. |title=On non-linear differential equations of the second order, I: The equation ''y''" + ''k''(1−''y''<sup>2</sup>)''y<nowiki>'</nowiki>'' + ''y'' = ''b''λkcos(λ''t'' + ''a''), ''k'' large |journal=Journal of the London Mathematical Society |volume=20 |pages=180–9 |year=1945 |doi=10.1112/jlms/s1-20.3.180 |issue=3 }} See also: [[Van der Pol oscillator]]</ref>和[[斯蒂芬·斯梅尔 Stephen Smale]]进行。<ref>{{cite journal |author=Smale, Stephen |title=Morse inequalities for a dynamical system |journal=Bulletin of the American Mathematical Society |volume=66 |pages=43–49 |date=January 1960 |doi=10.1090/S0002-9904-1960-10386-2 |bibcode=1994BAMaS..30..205W |doi-access=free }}</ref>除了Smale,这些研究都直接受到物理学的启发: Birkhoff的三体,Kolmogorov 的湍流和天文学问题,Cartwright和Littlewood的无线电工程。虽然还没有观察到混沌的行星运动,但实验人员已经遇到了流体运动中的湍流和无线电电路中的非周期性振荡,而没有一个理论来解释他们所看到的。 |
− | 爱德华·洛伦茨 Edward Lorenz是这一理论的早期开拓者。他对混沌的兴趣来源于1961年他在天气预报方面的工作。<ref name=Lorenz1961>{{cite journal |author=Lorenz, Edward N. |title=Deterministic non-periodic flow |journal=Journal of the Atmospheric Sciences |volume=20 |pages=130–141 |year=1963 |doi=10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 |issue=2 |bibcode=1963JAtS...20..130L|doi-access=free }}</ref>Lorenz正在使用一台简单的数字计算机,一台 Royal McBee LGP-30运行他的天气模拟。他想再看一次数据序列,为了节省时间,他在模拟过程中间开始了模拟。他通过输入一个打印输出的数据,这些数据对应于原始模拟中的条件。令他惊讶的是,机器开始预测的天气与以前的计算完全不同。Lorenz通过计算机打印出来的资料查到了这一点。计算机以6位数的精度工作,但打印输出的变量四舍五入到一个3位数字,所以像0.506127这样的值打印为0.506。这种差异是微小的,当时的共识是它不应该有任何实际效果。然而,Lorenz发现,初始条件的微小变化会导致长期结果的巨大变化。<ref>{{cite book|title=Chaos: Making a New Science |last=Gleick |first=James |year=1987 |publisher=Cardinal |location=London|page=17|isbn=978-0-434-29554-8|title-link=Chaos: Making a New Science }}</ref>Lorenz的发现,这给它的名字洛伦茨吸引子,表明即使详细的大气模型,一般来说,不能作出精确的长期天气预报。 | + | 爱德华·洛伦茨 Edward Lorenz是这一理论的早期开拓者。他对混沌的兴趣来源于1961年他在天气预报方面的工作。<ref name=Lorenz1961>{{cite journal |author=Lorenz, Edward N. |title=Deterministic non-periodic flow |journal=Journal of the Atmospheric Sciences |volume=20 |pages=130–141 |year=1963 |doi=10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 |issue=2 |bibcode=1963JAtS...20..130L|doi-access=free }}</ref>Lorenz正在使用一台简单的数字计算机,一台 Royal McBee LGP-30运行他的天气模拟。他想再看一次数据序列,为了节省时间,他在模拟过程中间开始了模拟。他通过输入一个打印输出的数据,这些数据对应于原始模拟中的条件。令他惊讶的是,机器开始预测的天气与以前的计算完全不同。Lorenz通过计算机打印出来的资料查到了这一点。计算机以6位数的精度工作,但打印输出的变量四舍五入到一个3位数字,所以像0.506127这样的值打印为0.506。这种差异是微小的,当时的共识是它不应该有任何实际效果。然而,Lorenz发现,初始条件的微小变化会导致长期结果的巨大变化。<ref>{{cite book|title=Chaos: Making a New Science |last=Gleick |first=James |year=1987 |publisher=Cardinal |location=London|page=17|isbn=978-0-434-29554-8}}</ref>Lorenz的发现,这给它的名字洛伦茨吸引子,表明即使详细的大气模型,一般来说,不能作出精确的长期天气预报。 |