更改

跳到导航 跳到搜索
添加13字节 、 2020年5月23日 (六) 16:03
第515行: 第515行:  
However,  for <math>m=1</math> it describes the winner takes it all mechanism as we find that almost <math>99\%</math> of the total nodes have degree one and one is super-rich in degree. As <math>m</math> value increases the disparity between the super rich and poor decreases and as <math>m>14</math> we find a transition from rich get super richer to rich get richer mechanism.
 
However,  for <math>m=1</math> it describes the winner takes it all mechanism as we find that almost <math>99\%</math> of the total nodes have degree one and one is super-rich in degree. As <math>m</math> value increases the disparity between the super rich and poor decreases and as <math>m>14</math> we find a transition from rich get super richer to rich get richer mechanism.
   −
然而对于<math>m=1</math>,它描述了赢者通吃的机制,因为可以发现几乎<math>99\%</math> 的节点的度仅为1,而某一个节点的度超级大。当<math>m</math>的值增加时,超级富人和穷人之间的差距减小;当<math>m>14</math>时,从赢者通吃机制转变为富人更富机制。
+
然而,当<math>m=1</math> 时,它描述了赢者通吃的机制,因为我们可以发现,几乎<math>99\%</math> 的节点的度仅为1,而某一个节点的度超级大。当<math>m</math>的值增加时,超级富人和穷人之间的差距减小;当<math>m>14</math>时,从赢者通吃机制转变为富人更富机制。
    
=== 适应度模型 ===
 
=== 适应度模型 ===
198

个编辑

导航菜单