The structural robustness of networks<ref>{{cite book |title= Complex Networks: Structure, Robustness and Function |author1=R. Cohen |author2=S. Havlin |year= 2010 |publisher= Cambridge University Press |url= http://havlin.biu.ac.il/Shlomo%20Havlin%20books_com_net.php}}</ref> is studied using [[percolation theory]]. When a critical fraction of nodes is removed the network becomes fragmented into small clusters. This phenomenon is called percolation<ref>{{cite book |title= Fractals and Disordered Systems |author1=A. Bunde |author2=S. Havlin |year= 1996 |publisher= Springer |url= http://havlin.biu.ac.il/Shlomo%20Havlin%20books_fds.php}}</ref> and it represents an order-disorder type of [[phase transition]] with [[critical exponents]]. | The structural robustness of networks<ref>{{cite book |title= Complex Networks: Structure, Robustness and Function |author1=R. Cohen |author2=S. Havlin |year= 2010 |publisher= Cambridge University Press |url= http://havlin.biu.ac.il/Shlomo%20Havlin%20books_com_net.php}}</ref> is studied using [[percolation theory]]. When a critical fraction of nodes is removed the network becomes fragmented into small clusters. This phenomenon is called percolation<ref>{{cite book |title= Fractals and Disordered Systems |author1=A. Bunde |author2=S. Havlin |year= 1996 |publisher= Springer |url= http://havlin.biu.ac.il/Shlomo%20Havlin%20books_fds.php}}</ref> and it represents an order-disorder type of [[phase transition]] with [[critical exponents]]. |