更改
跳到导航
跳到搜索
←上一编辑
下一编辑→
动力系统理论 Dynamical Systems Theory
(查看源代码)
2020年7月20日 (一) 14:02的版本
删除10字节
、
2020年7月20日 (一) 14:02
→综述
第13行:
第13行:
对给定动力系统的研究的一个重要方向就是求动力系统的不动点或稳态。不动点或稳态的的值不会随时间的变化而变化,在不动点的附近,不动点对系统具有收敛性。也就是说如果系统的初始值在它的附近,系统最终会收敛到这个不动点。
对给定动力系统的研究的一个重要方向就是求动力系统的不动点或稳态。不动点或稳态的的值不会随时间的变化而变化,在不动点的附近,不动点对系统具有收敛性。也就是说如果系统的初始值在它的附近,系统最终会收敛到这个不动点。
−
动力系统的[[周期点]](Periodic Points)
也是一个具有前景的研究方向,周期点为系统在重复几个周期后之后的状态。周期点也是具有系统的收敛性,也可称做该点具有吸引力(attactive)的。
[[Sharkovskii定理]]描述了一维离散动力系统的周期点的个数。
+
动力系统的[[周期点]](Periodic Points)
也是一个具有前景的研究方向,周期点为系统在重复几个周期后之后的状态。周期点也是具有系统的收敛性,也可称做该点具有吸引力的。
[[Sharkovskii定理]]描述了一维离散动力系统的周期点的个数。
−
即使是简单的非线性动力系统也常常表现出看似随机的行为,这种行为被称为混沌chaos
<ref>{{cite journal |last=Grebogi |first=C. |last2=Ott |first2=E. |last3=Yorke |first3=J. |year=1987 |title=Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics |journal=[[Science (journal)|Science]] |volume=238 |issue=4827 |pages=632–638 |doi=10.1126/science.238.4827.632 |pmid=17816542 |bibcode=1987Sci...238..632G }}</ref>。动力学系统中涉及混沌的清晰定义和研究的分支称为[[混沌理论]]。
+
即使是简单的非线性动力系统也常常表现出看似随机的行为,这种行为被称为混沌 Chaos
<ref>{{cite journal |last=Grebogi |first=C. |last2=Ott |first2=E. |last3=Yorke |first3=J. |year=1987 |title=Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics |journal=[[Science (journal)|Science]] |volume=238 |issue=4827 |pages=632–638 |doi=10.1126/science.238.4827.632 |pmid=17816542 |bibcode=1987Sci...238..632G }}</ref>。动力学系统中涉及混沌的清晰定义和研究的分支称为[[混沌理论]]。
==历史==
==历史==
打豆豆
421
个编辑
导航菜单
个人工具
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
集智百科
集智主页
集智斑图
集智学园
最近更改
所有页面
帮助
工具
特殊页面
可打印版本