第82行: |
第82行: |
| The shortest such program implies the uncompressed stored variable more-likely causes the computed variable.<ref>Kailash Budhathoki and Jilles Vreeken "[http://eda.mmci.uni-saarland.de/pubs/2016/origo-budhathoki,vreeken.pdf Causal Inference by Compression]" 2016 IEEE 16th International Conference on Data Mining (ICDM)</ref><ref>{{Cite journal |doi = 10.1007/s10115-018-1286-7|title = Telling cause from effect by local and global regression|journal = Knowledge and Information Systems|year = 2018|last1 = Marx|first1 = Alexander|last2 = Vreeken|first2 = Jilles|volume=60|issue = 3|pages=1277–1305|doi-access = free}}</ref> | | The shortest such program implies the uncompressed stored variable more-likely causes the computed variable.<ref>Kailash Budhathoki and Jilles Vreeken "[http://eda.mmci.uni-saarland.de/pubs/2016/origo-budhathoki,vreeken.pdf Causal Inference by Compression]" 2016 IEEE 16th International Conference on Data Mining (ICDM)</ref><ref>{{Cite journal |doi = 10.1007/s10115-018-1286-7|title = Telling cause from effect by local and global regression|journal = Knowledge and Information Systems|year = 2018|last1 = Marx|first1 = Alexander|last2 = Vreeken|first2 = Jilles|volume=60|issue = 3|pages=1277–1305|doi-access = free}}</ref> |
| | | |
− | 最短的这种程序意味着,更有可能是未压缩的'''<font color='#32cd32>存储变量stored variable</font>'''导致了'''<font color='#32cd32>计算出的变量computed variable</font>'''。 | + | 最短的这种程序意味着,更有可能是未压缩的'''<font color='#ff8000>存储变量stored variable</font>'''导致了'''<font color='#ff8000>计算出的变量computed variable</font>'''。 |
| + | |
| + | ===Noise models噪音模型=== |
| | | |
− | ===Noise models===
| |
| | | |
− | 噪音模型
| |
| | | |
| | | |
| Incorporate an independent noise term in the model to compare the evidences of the two directions. | | Incorporate an independent noise term in the model to compare the evidences of the two directions. |
| | | |
− | 在模型中引入一个独立的噪声项,比较两个方向的证据。
| + | 在模型中引入一个独立的噪声项,以比较两个方向的证据。 |
| | | |
| | | |
| Here are some of the noise models for the hypothesis Y → X with the noise E: | | Here are some of the noise models for the hypothesis Y → X with the noise E: |
| | | |
− | 下面是一些假设 y → x 有噪声 e 的噪声模型:
| + | 下面是一些支持 Y → X 假设且具有噪声 E 的噪声模型: |
| * Additive noise:<ref>Hoyer, Patrik O., et al. "[https://papers.nips.cc/paper/3548-nonlinear-causal-discovery-with-additive-noise-models.pdf Nonlinear causal discovery with additive noise models]." NIPS. Vol. 21. 2008.</ref> <math>Y = F(X)+E</math> | | * Additive noise:<ref>Hoyer, Patrik O., et al. "[https://papers.nips.cc/paper/3548-nonlinear-causal-discovery-with-additive-noise-models.pdf Nonlinear causal discovery with additive noise models]." NIPS. Vol. 21. 2008.</ref> <math>Y = F(X)+E</math> |
| + | * '''<font color='#ff8000>加法噪音Additive noise</font>''' |
| | | |
| * Linear noise:<ref>{{cite journal | last1 = Shimizu | first1 = Shohei | display-authors = etal | year = 2011 | title = DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model | url = http://www.jmlr.org/papers/volume12/shimizu11a/shimizu11a.pdf | journal = The Journal of Machine Learning Research | volume = 12 | issue = | pages = 1225–1248 }}</ref> <math>Y = pX + qE</math> | | * Linear noise:<ref>{{cite journal | last1 = Shimizu | first1 = Shohei | display-authors = etal | year = 2011 | title = DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model | url = http://www.jmlr.org/papers/volume12/shimizu11a/shimizu11a.pdf | journal = The Journal of Machine Learning Research | volume = 12 | issue = | pages = 1225–1248 }}</ref> <math>Y = pX + qE</math> |
| + | * '''<font color='#ff8000>线性噪音Linear noise</font>''' |
| | | |
| * Post-non-linear:<ref>Zhang, Kun, and Aapo Hyvärinen. "[https://arxiv.org/pdf/1205.2599 On the identifiability of the post-nonlinear causal model]." Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2009.</ref> <math>Y = G(F(X)+E)</math> | | * Post-non-linear:<ref>Zhang, Kun, and Aapo Hyvärinen. "[https://arxiv.org/pdf/1205.2599 On the identifiability of the post-nonlinear causal model]." Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2009.</ref> <math>Y = G(F(X)+E)</math> |
| + | * '''<font color='#ff8000>后非线性Post-non-linear(噪音)</font>''' |
| | | |
| * Heteroskedastic noise: <math>Y = F(X)+E.G(X)</math> | | * Heteroskedastic noise: <math>Y = F(X)+E.G(X)</math> |
| + | * '''<font color='#ff8000>异方差噪音Heteroskedastic noise</font>''' |
| | | |
| * Functional noise:<ref name="Mooij">Mooij, Joris M., et al. "[http://papers.nips.cc/paper/4173-probabilistic-latent-variable-models-for-distinguishing-between-cause-and-effect.pdf Probabilistic latent variable models for distinguishing between cause and effect]." NIPS. 2010.</ref> <math>Y = F(X,E)</math> | | * Functional noise:<ref name="Mooij">Mooij, Joris M., et al. "[http://papers.nips.cc/paper/4173-probabilistic-latent-variable-models-for-distinguishing-between-cause-and-effect.pdf Probabilistic latent variable models for distinguishing between cause and effect]." NIPS. 2010.</ref> <math>Y = F(X,E)</math> |
− | | + | * '''<font color='#ff8000>功能性噪音Functional noise</font>''' |
| | | |
| | | |
第113行: |
第117行: |
| 这些模型的共同假设是: | | 这些模型的共同假设是: |
| * There are no other causes of Y. | | * There are no other causes of Y. |
| + | * Y 没有其他原因。 |
| | | |
| * X and E have no common causes. | | * X and E have no common causes. |
| + | * X 和 E 没有共同的原因。 |
| | | |
| * Distribution of cause is independent from causal mechanisms. | | * Distribution of cause is independent from causal mechanisms. |
| + | * 原因的分布独立于因果机制。 |
| | | |
− | | + | == here == |
− | | |
| On an intuitive level, the idea is that the factorization of the joint distribution P(Cause, Effect) into P(Cause)*P(Effect | Cause) typically yields models of lower total complexity than the factorization into P(Effect)*P(Cause | Effect). Although the notion of “complexity” is intuitively appealing, it is not obvious how it should be precisely defined.<ref name="Mooij"/> A different family of methods attempt to discover causal "footprints" from large amounts of labeled data, and allow the prediction of more flexible causal relations.<ref>Lopez-Paz, David, et al. "[http://www.jmlr.org/proceedings/papers/v37/lopez-paz15.pdf Towards a learning theory of cause-effect inference]" ICML. 2015</ref> | | On an intuitive level, the idea is that the factorization of the joint distribution P(Cause, Effect) into P(Cause)*P(Effect | Cause) typically yields models of lower total complexity than the factorization into P(Effect)*P(Cause | Effect). Although the notion of “complexity” is intuitively appealing, it is not obvious how it should be precisely defined.<ref name="Mooij"/> A different family of methods attempt to discover causal "footprints" from large amounts of labeled data, and allow the prediction of more flexible causal relations.<ref>Lopez-Paz, David, et al. "[http://www.jmlr.org/proceedings/papers/v37/lopez-paz15.pdf Towards a learning theory of cause-effect inference]" ICML. 2015</ref> |
| | | |
− | 在直观的层面上,这个想法是联合分布 p (因果)到 p (因果) * p (效果 | 原因)的因式分解通常产生的模型的总复杂性低于因式分解到 p (效果) * p (因果)。尽管“复杂性”的概念在直觉上很吸引人,但是它应该如何精确定义却并不明显。 | + | 在直观的层面上,这个想法是联合分布 P(Cause, Effect) 到 P(Cause)*P(Effect | Cause)的因式分解通常产生的模型的总复杂性低于因式分解到 p (效果) * p (因果)。尽管“复杂性”的概念在直觉上很吸引人,但是它应该如何精确定义却并不明显。 |
− | | |
| | | |
| == In statistics and economics == | | == In statistics and economics == |