更改

添加522字节 、 2020年11月3日 (二) 16:38
第89行: 第89行:  
:<math>H(X_1,\ldots, X_n) \leq H(X_1) + \ldots + H(X_n)</math>
 
:<math>H(X_1,\ldots, X_n) \leq H(X_1) + \ldots + H(X_n)</math>
   −
==Relations to other entropy measures==
+
== Relations to other entropy measures 与其他熵测度的关系 ==
    
Joint entropy is used in the definition of [[conditional entropy]]<ref name=cover1991 />{{rp|22}}
 
Joint entropy is used in the definition of [[conditional entropy]]<ref name=cover1991 />{{rp|22}}
 +
 +
联合熵用于定义'''<font color="#ff8000"> 条件熵Conditional entropy </font>''':
 +
    
:<math>\Eta(X|Y) = \Eta(X,Y) - \Eta(Y)\,</math>,
 
:<math>\Eta(X|Y) = \Eta(X,Y) - \Eta(Y)\,</math>,
   −
and <math display="block">\Eta(X_1,\dots,X_n) = \sum_{k=1}^n \Eta(X_k|X_{k-1},\dots, X_1)</math>It is also used in the definition of [[mutual information]]<ref name=cover1991 />{{rp|21}}
+
and <math display="block">\Eta(X_1,\dots,X_n) = \sum_{k=1}^n \Eta(X_k|X_{k-1},\dots, X_1)</math>
 +
 
 +
 
 +
It is also used in the definition of [[mutual information]]<ref name=cover1991 />{{rp|21}}
 +
它也用于定义交互信息:
 +
 
    
:<math>\operatorname{I}(X;Y) = \Eta(X) + \Eta(Y) - \Eta(X,Y)\,</math>
 
:<math>\operatorname{I}(X;Y) = \Eta(X) + \Eta(Y) - \Eta(X,Y)\,</math>
 +
    
In [[quantum information theory]], the joint entropy is generalized into the [[joint quantum entropy]].
 
In [[quantum information theory]], the joint entropy is generalized into the [[joint quantum entropy]].
   −
=== Applications ===
+
在'''<font color="#ff8000"> 量子信息论Quantum information theory</font>'''中,联合熵被广义化为'''<font color="#ff8000"> 联合量子熵Joint quantum entropy</font>'''。
 +
 
 +
 
 +
 
 +
=== Applications 应用 ===
    
A python package for computing all multivariate joint entropies, mutual informations, conditional mutual information, total correlations, information distance in a dataset of n variables is available.<ref>{{cite web|url=https://infotopo.readthedocs.io/en/latest/index.html|title=InfoTopo: Topological Information Data Analysis. Deep statistical unsupervised and supervised learning - File Exchange - Github|author=|date=|website=github.com/pierrebaudot/infotopopy/|accessdate=26 September 2020}}</ref>
 
A python package for computing all multivariate joint entropies, mutual informations, conditional mutual information, total correlations, information distance in a dataset of n variables is available.<ref>{{cite web|url=https://infotopo.readthedocs.io/en/latest/index.html|title=InfoTopo: Topological Information Data Analysis. Deep statistical unsupervised and supervised learning - File Exchange - Github|author=|date=|website=github.com/pierrebaudot/infotopopy/|accessdate=26 September 2020}}</ref>
 +
 +
提供了一个python软件包,用于计算n个变量的数据集中的所有多元联合熵,交互信息,条件交互信息,总相关性,信息距离。
    
==Joint differential entropy==
 
==Joint differential entropy==
961

个编辑