第100行: |
第100行: |
| |background colour=#F5FFFA}} | | |background colour=#F5FFFA}} |
| | | |
− | ==Some identities== | + | == Some identities 部分特性 == |
| Alternatively, we may write in terms of joint and conditional [[Entropy (information theory)|entropies]] as<ref>{{cite book |last1=Cover |first1=Thomas |author-link1=Thomas M. Cover |last2=Thomas |first2=Joy A. |title=Elements of Information Theory |edition=2nd |location=New York |publisher=[[Wiley-Interscience]] |date=2006 |isbn=0-471-24195-4}}</ref> | | Alternatively, we may write in terms of joint and conditional [[Entropy (information theory)|entropies]] as<ref>{{cite book |last1=Cover |first1=Thomas |author-link1=Thomas M. Cover |last2=Thomas |first2=Joy A. |title=Elements of Information Theory |edition=2nd |location=New York |publisher=[[Wiley-Interscience]] |date=2006 |isbn=0-471-24195-4}}</ref> |
| + | 同时我们也可以将联合和条件熵写为: |
| + | |
| + | |
| :<math>I(X;Y|Z) = H(X,Z) + H(Y,Z) - H(X,Y,Z) - H(Z) | | :<math>I(X;Y|Z) = H(X,Z) + H(Y,Z) - H(X,Y,Z) - H(Z) |
| = H(X|Z) - H(X|Y,Z) = H(X|Z)+H(Y|Z)-H(X,Y|Z).</math> | | = H(X|Z) - H(X|Y,Z) = H(X|Z)+H(Y|Z)-H(X,Y|Z).</math> |
| + | |
| + | |
| This can be rewritten to show its relationship to mutual information | | This can be rewritten to show its relationship to mutual information |
| + | 这么表达以显示其与交互信息的关系 |
| + | |
| + | |
| :<math>I(X;Y|Z) = I(X;Y,Z) - I(X;Z)</math> | | :<math>I(X;Y|Z) = I(X;Y,Z) - I(X;Z)</math> |
| + | |
| + | |
| usually rearranged as '''the chain rule for mutual information''' | | usually rearranged as '''the chain rule for mutual information''' |
| + | 通常情况下,表达式被重新整理为“交互信息的链式法则” |
| + | |
| + | |
| :<math>I(X;Y,Z) = I(X;Z) + I(X;Y|Z)</math> | | :<math>I(X;Y,Z) = I(X;Z) + I(X;Y|Z)</math> |
| + | |
| + | |
| Another equivalent form of the above is<ref>[https://math.stackexchange.com/q/1863993 Decomposition on Math.StackExchange]</ref> | | Another equivalent form of the above is<ref>[https://math.stackexchange.com/q/1863993 Decomposition on Math.StackExchange]</ref> |
| + | 上述的另一种等效形式是: |
| + | |
| + | |
| :<math>I(X;Y|Z) = H(Z|X) + H(X) + H(Z|Y) + H(Y) - H(Z|X,Y) - H(X,Y) - H(Z) | | :<math>I(X;Y|Z) = H(Z|X) + H(X) + H(Z|Y) + H(Y) - H(Z|X,Y) - H(X,Y) - H(Z) |
| = I(X;Y) + H(Z|X) + H(Z|Y) - H(Z|X,Y) - H(Z)</math> | | = I(X;Y) + H(Z|X) + H(Z|Y) - H(Z|X,Y) - H(Z)</math> |
| + | |
| | | |
| Like mutual information, conditional mutual information can be expressed as a [[Kullback–Leibler divergence]]: | | Like mutual information, conditional mutual information can be expressed as a [[Kullback–Leibler divergence]]: |
| + | 类似交互信息一样,条件交互信息可以表示为Kullback-Leibler散度: |
| + | |
| | | |
| :<math> I(X;Y|Z) = D_{\mathrm{KL}}[ p(X,Y,Z) \| p(X|Z)p(Y|Z)p(Z) ]. </math> | | :<math> I(X;Y|Z) = D_{\mathrm{KL}}[ p(X,Y,Z) \| p(X|Z)p(Y|Z)p(Z) ]. </math> |
| + | |
| | | |
| Or as an expected value of simpler Kullback–Leibler divergences: | | Or as an expected value of simpler Kullback–Leibler divergences: |
| + | 或作为更简单的Kullback-Leibler差异的期望值: |
| + | |
| + | |
| :<math> I(X;Y|Z) = \sum_{z \in \mathcal{Z}} p( Z=z ) D_{\mathrm{KL}}[ p(X,Y|z) \| p(X|z)p(Y|z) ]</math>, | | :<math> I(X;Y|Z) = \sum_{z \in \mathcal{Z}} p( Z=z ) D_{\mathrm{KL}}[ p(X,Y|z) \| p(X|z)p(Y|z) ]</math>, |
| :<math> I(X;Y|Z) = \sum_{y \in \mathcal{Y}} p( Y=y ) D_{\mathrm{KL}}[ p(X,Z|y) \| p(X|Z)p(Z|y) ]</math>. | | :<math> I(X;Y|Z) = \sum_{y \in \mathcal{Y}} p( Y=y ) D_{\mathrm{KL}}[ p(X,Z|y) \| p(X|Z)p(Z|y) ]</math>. |