“自复制”的版本间的差异

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
跳到导航 跳到搜索
第1行: 第1行:
此词条暂由袁一博翻译,未经人工整理和审校,带来阅读不便,请见谅。{{see also|Biological reproduction}}
 
 
 
本词条已由[[用户:Qige96|Ricky]]、[[用户:Paradoxist-Paradoxer|Paradoxist@Paradoxer]]审校。
 
本词条已由[[用户:Qige96|Ricky]]、[[用户:Paradoxist-Paradoxer|Paradoxist@Paradoxer]]审校。
  
第6行: 第4行:
  
  
[[Image:DNA chemical structure.svg|thumb|right|200px|[[Molecular structure]] of [[DNA]] ]]
+
[[Image:DNA chemical structure.svg|thumb|right|200px|DNA分子结构 ]]
 
 
[[Molecular structure of DNA  DNA分子结构]]
 
 
 
[ DNA 的分子结构]
 
 
 
'''Self-replication''' is any behavior of a [[dynamical system]] that yields construction of an identical or similar copy of itself. [[Cell (biology)|Biological cell]]s, given suitable environments, reproduce by [[cell division]]. During cell division, [[DNA]] is replicated and can be transmitted to offspring during [[reproduction]]. [[virus (biology)|Biological viruses]] can [[Viral replication|replicate]], but only by commandeering the reproductive machinery of cells through a process of infection. Harmful [[prion]] proteins can replicate by converting normal proteins into rogue forms.<ref>{{cite news|url=http://news.bbc.co.uk/1/hi/health/8435320.stm |title='Lifeless' prion proteins are 'capable of evolution' |work=BBC News |date=2010-01-01 |accessdate=2013-10-22}}</ref> [[Computer virus]]es reproduce using the hardware and software already present on computers. Self-replication in [[robotics]] has been an area of research and a subject of interest in [[science fiction]]. Any self-replicating mechanism which does not make a perfect copy ([[mutation]]) will experience [[genetic variation]] and will create variants of itself. These variants will be subject to [[natural selection]], since some will be better at surviving in their current environment than others and will out-breed them.
 
 
 
Self-replication is any behavior of a dynamical system that yields construction of an identical or similar copy of itself. Biological cells, given suitable environments, reproduce by cell division. During cell division, DNA is replicated and can be transmitted to offspring during reproduction. Biological viruses can replicate, but only by commandeering the reproductive machinery of cells through a process of infection. Harmful prion proteins can replicate by converting normal proteins into rogue forms. Computer viruses reproduce using the hardware and software already present on computers. Self-replication in robotics has been an area of research and a subject of interest in science fiction. Any self-replicating mechanism which does not make a perfect copy (mutation) will experience genetic variation and will create variants of itself. These variants will be subject to natural selection, since some will be better at surviving in their current environment than others and will out-breed them.
 
  
'''<font color="#ff8000">自复制 Self-replication </font>'''是一个动力系统任何能产生与自身相同或相似的复制体的的行为。生物细胞,在适当的环境下,通过细胞分裂进行繁殖。在细胞分裂过程中,DNA 被复制,并在生殖过程中传递给后代。生物病毒可以复制,但只能通过感染过程控制细胞的生殖机制。有害的朊病毒蛋白可以通过将正常的蛋白质转化为反常形式来复制。<ref>{{cite news|url=http://news.bbc.co.uk/1/hi/health/8435320.stm |title='Lifeless' prion proteins are 'capable of evolution' |work=BBC News |date=2010-01-01 |accessdate=2013-10-22}}</ref>计算机病毒利用计算机上已有的硬件和软件进行复制。自我复制机器人学一直是一个研究领域,也是科幻小说中的一个兴趣主题。任何不能完美复制的自复制机制(变异)都会经历遗传变异,产生自身的变异体。这些变异体将受到自然选择的影响,因为有些变异会比其他变异更好地在当前环境中生存,并将超越他们。
+
'''自复制 Self-replication'''是一个动力系统任何能产生与自身相同或相似的复制体的的行为。生物细胞,在适当的环境下,通过细胞分裂进行繁殖。在细胞分裂过程中,DNA 被复制,并在生殖过程中传递给后代。生物病毒可以复制,但只能通过感染过程控制细胞的生殖机制。有害的朊病毒蛋白可以通过将正常的蛋白质转化为反常形式来复制。<ref>{{cite news|url=http://news.bbc.co.uk/1/hi/health/8435320.stm |title='Lifeless' prion proteins are 'capable of evolution' |work=BBC News |date=2010-01-01 |accessdate=2013-10-22}}</ref>计算机病毒利用计算机上已有的硬件和软件进行复制。自我复制机器人学一直是一个研究领域,也是科幻小说中的一个兴趣主题。任何不能完美复制的自复制机制(变异)都会经历遗传变异,产生自身的变异体。这些变异体将受到自然选择的影响,因为有些变异会比其他变异更好地在当前环境中生存,并将超越他们。
  
  
第25行: 第15行:
 
{{See also|Von Neumann universal constructor}}
 
{{See also|Von Neumann universal constructor}}
  
Early research by [[John von Neumann]]<ref name=Hixon_vonNeumann>{{cite book|last=von Neumann|first=John|title=The Hixon Symposium|year=1948|location=Pasadena, California|pages=1–36}}</ref> established that replicators have several parts:
+
[[约翰·冯·诺依曼 John_von_Neumann]]的早期研究<ref name=Hixon_vonNeumann>{{cite book|last=von Neumann|first=John|title=The Hixon Symposium|year=1948|location=Pasadena, California|pages=1–36}}</ref>表明复制因子有几个部分:
 
 
Early research by John von Neumann established that replicators have several parts:
 
  
[[约翰·冯·诺依曼_John_von_Neumann|约翰·冯·诺伊曼]]的早期研究<ref name=Hixon_vonNeumann>{{cite book|last=von Neumann|first=John|title=The Hixon Symposium|year=1948|location=Pasadena, California|pages=1–36}}</ref>表明复制因子有几个部分:
+
*'''<font color="#ff8000">复制机 replicator</font>'''的编码表示
 
 
*A coded representation of the replicator
 
*A mechanism to copy the coded representation
 
*A mechanism for effecting construction within the host environment of the replicator
 
 
 
*'''<font color="#ff8000">复制机(replicator)</font>'''的的编码表示
 
 
*一种能复制编码后的复制机表示的机制
 
*一种能复制编码后的复制机表示的机制
 
*一种能在复制机所在环境中启动构建过程的机制
 
*一种能在复制机所在环境中启动构建过程的机制
 
Exceptions to this pattern may be possible, although none have yet been achieved.  For example, scientists have come close to  constructing [https://arstechnica.com/science/2011/04/investigations-into-the-ancient-rna-world/ RNA that can be copied] in an "environment" that is a solution of RNA monomers and transcriptase.  In this case, the body is the genome, and the specialized copy mechanisms are external.  The requirement for an outside copy mechanism has not yet been overcome, and such systems are more accurately characterized as "assisted replication" than "self-replication".
 
 
Exceptions to this pattern may be possible, although none have yet been achieved.  For example, scientists have come close to  constructing [https://arstechnica.com/science/2011/04/investigations-into-the-ancient-rna-world/ RNA that can be copied] in an "environment" that is a solution of RNA monomers and transcriptase.  In this case, the body is the genome, and the specialized copy mechanisms are external.  The requirement for an outside copy mechanism has not yet been overcome, and such systems are more accurately characterized as "assisted replication" than "self-replication".
 
 
这种模式可能有例外,尽管尚未由任何发现。例如,科学家们已经接近于在 RNA 单体和转录酶的“环境”中构建[https://arstechnica.com/science/2011/04/investigations-into-the-ancient-RNA-world/  可复制的RNA ]。在这种情况下,身体就是基因组,专门的复制机制是外部的。对外部复制机制的需求尚未被克服,这种系统更准确地描述为“辅助复制”而不是“自我复制”。
 
  
  
However, the simplest possible case is that only a genome exists. Without some specification of the self-reproducing steps, a genome-only system is probably better characterized as something like a [[crystal]].
+
这种模式可能有例外,尽管尚未由任何发现。例如,科学家们已经接近于在 RNA 单体和转录酶的“环境”中构建[https://arstechnica.com/science/2011/04/investigations-into-the-ancient-RNA-world/ 可复制的RNA]。在这种情况下,身体就是基因组,专门的复制机制是外部的。对外部复制机制的需求尚未被克服,这种系统更准确地描述为“辅助复制”而不是“自我复制”。
  
However, the simplest possible case is that only a genome exists.  Without some specification of the self-reproducing steps, a genome-only system is probably better characterized as something like a crystal.
 
  
 
然而,最简单的可能情况是只有一个基因组存在。如果没有一些自我繁殖步骤的说明,一个只有基因组的系统可能被描述为类似于晶体的东西会更为恰当。
 
然而,最简单的可能情况是只有一个基因组存在。如果没有一些自我繁殖步骤的说明,一个只有基因组的系统可能被描述为类似于晶体的东西会更为恰当。
第54行: 第29行:
  
 
===自复制的种类===
 
===自复制的种类===
 
Recent research<ref>{{cite web|url = http://www.MolecularAssembler.com/KSRM/5.1.htm | date = 2004 | accessdate = 29 June 2013 | last = Freitas | first = Robert | last2 = Merkle | first2 = Ralph | title = Kinematic Self-Replicating Machines - General Taxonomy of Replicators}}</ref> has begun to categorize replicators, often based on the amount of support they require.
 
 
Recent research has begun to categorize replicators, often based on the amount of support they require.
 
  
 
最近的研究<ref>{{cite web|url = http://www.MolecularAssembler.com/KSRM/5.1.htm | date = 2004 | accessdate = 29 June 2013 | last = Freitas | first = Robert | last2 = Merkle | first2 = Ralph | title = Kinematic Self-Replicating Machines - General Taxonomy of Replicators}}</ref>已经开始对复制者进行分类,通常基于它们所需要的支持程度。
 
最近的研究<ref>{{cite web|url = http://www.MolecularAssembler.com/KSRM/5.1.htm | date = 2004 | accessdate = 29 June 2013 | last = Freitas | first = Robert | last2 = Merkle | first2 = Ralph | title = Kinematic Self-Replicating Machines - General Taxonomy of Replicators}}</ref>已经开始对复制者进行分类,通常基于它们所需要的支持程度。
  
*Natural replicators have all or most of their design from nonhuman sources. Such systems include natural life forms.
 
*[[Autotroph]]ic replicators can reproduce themselves "in the wild".  They mine their own materials. It is conjectured that non-biological autotrophic replicators could be designed by humans, and could easily accept specifications for human products.
 
*Self-reproductive systems are conjectured systems which would produce copies of themselves from industrial feedstocks such as metal bar and wire.
 
*Self-assembling systems assemble copies of themselves from finished, delivered parts. Simple examples of such systems have been demonstrated at the macro scale.
 
  
*'''<font color="#ff8000">天然复制机(Natural replicators)</font>'''的设计全部或绝大部分不经人手,浑然天成(😂)。这样的系统包含自然的生命形式。
+
*'''<font color="#ff8000">天然复制机 Natural replicators</font>'''的设计全部或绝大部分不经人手,浑然天成。这样的系统包含自然的生命形式。
*'''<font color="#ff8000">无机复制机(Autotrophic replicators)</font>'''可以在自然环境下进行自我复制。它们自己会收集自身的物质。据推测,非生物的无机复制因子可以由人类设计而成,并且可以轻易按照人类人品的规格去设计。
+
*'''<font color="#ff8000">无机复制机 Autotrophic replicators</font>'''可以在自然环境下进行自我复制。它们自己会收集自身的物质。据推测,非生物的无机复制因子可以由人类设计而成,并且可以轻易按照人类人品的规格去设计。
*'''<font color="#ff8000">自生产系统(Self-reproductive systems)</font>'''存在于假想当中,可以利用工业原料,例如金属棒和金属丝,以产生自身的拷贝
+
*'''<font color="#ff8000">自生产系统 Self-reproductive systems</font>'''存在于假想当中,可以利用工业原料,例如金属棒和金属丝,以产生自身的拷贝。
*'''<font color="#ff8000">自组装系统(Self-assembling systems)</font>'''自动将它们各种已完成的部分组装起来。这种系统的简单例子已经在宏观尺度得到展示。
+
*'''<font color="#ff8000">自组装系统 Self-assembling systems</font>'''自动将它们各种已完成的部分组装起来。这种系统的简单例子已经在宏观尺度得到展示。
  
  
第76行: 第43行:
 
The design space for machine replicators is very broad. A comprehensive study to date by Robert Freitas and Ralph Merkle has identified 137 design dimensions grouped into a dozen separate categories, including: (1) Replication Control, (2) Replication Information, (3) Replication Substrate, (4) Replicator Structure, (5) Passive Parts, (6) Active Subunits, (7) Replicator Energetics, (8) Replicator Kinematics, (9) Replication Process, (10) Replicator Performance, (11) Product Structure, and (12) Evolvability.
 
The design space for machine replicators is very broad. A comprehensive study to date by Robert Freitas and Ralph Merkle has identified 137 design dimensions grouped into a dozen separate categories, including: (1) Replication Control, (2) Replication Information, (3) Replication Substrate, (4) Replicator Structure, (5) Passive Parts, (6) Active Subunits, (7) Replicator Energetics, (8) Replicator Kinematics, (9) Replication Process, (10) Replicator Performance, (11) Product Structure, and (12) Evolvability.
  
机械复制机的设计空间非常广阔。迄今为止,罗伯特·弗雷塔斯(Robert Freitas)和拉尔夫·默克尔(Ralph Merkle)的综合研究<ref>{{cite web|url = http://www.MolecularAssembler.com/KSRM/5.1.9.htm | date = 2004 | accessdate = 29 June 2013 | last1 = Freitas | first1 = Robert | last2 = Merkle | first2 = Ralph | title = Kinematic Self-Replicating Machines - Freitas-Merkle Map of the Kinematic Replicator Design Space (2003–2004)}}</ref> 已经确定了137个设计维度并将其分为十几个独立的类别,包括: (1)复制控制,(2)复制信息,(3)复制基质,(4)复制机结构,(5)被动部件,(6)主动子单元,(7)复制机能量学,(8)复制机运动学,(9)复制过程,(10)复制机性能,(11)产物结构,和(12)可演化性。
+
机械复制机的设计空间非常广阔。迄今为止,罗伯特·弗雷塔斯 Robert Freitas和拉尔夫·默克尔 Ralph Merkle的综合研究<ref>{{cite web|url = http://www.MolecularAssembler.com/KSRM/5.1.9.htm | date = 2004 | accessdate = 29 June 2013 | last1 = Freitas | first1 = Robert | last2 = Merkle | first2 = Ralph | title = Kinematic Self-Replicating Machines - Freitas-Merkle Map of the Kinematic Replicator Design Space (2003–2004)}}</ref> 已经确定了137个设计维度并将其分为十几个独立的类别,包括:
 +
:(1)复制控制,
 +
:(2)复制信息,
 +
:(3)复制基质,
 +
:(4)复制机结构,
 +
:(5)被动部件,
 +
:(6)主动子单元,
 +
:(7)复制机能量学,
 +
:(8)复制机运动学,
 +
:(9)复制过程,
 +
:(10)复制机性能,
 +
:(11)产物结构,
 +
:(12)可演化性。
  
  
第83行: 第62行:
 
{{Main|Quine (computing)}}
 
{{Main|Quine (computing)}}
  
In [[computer science]] a [[Quine (computing)|quine]] is a self-reproducing computer program that, when executed, outputs its own code. For example, a quine in the [[Python (programming language)|Python programming language]] is:
 
  
In computer science a quine is a self-reproducing computer program that, when executed, outputs its own code. For example, a quine in the Python programming language is:
 
  
在计算机科学中,quine 是一种自我复制的计算机程序,当执行时,输出自己的代码。例如,利用Python语言编写的一个 quine :
+
在[[计算机科学]]中,quine是一种自我复制的计算机程序,当执行时,输出自己的代码。例如,利用Python语言编写的一个 quine 如下:
  
 
:<code>a='a=%r;print(a%%a)';print(a%a)</code>
 
:<code>a='a=%r;print(a%%a)';print(a%a)</code>
  
 
A more trivial approach is to write a program that will make a copy of any stream of data that it is directed to, and then direct it at itself. In this case the program is treated as both executable code, and as data to be manipulated. This approach is common in most self-replicating systems, including biological life, and is simpler as it does not require the program to contain a complete description of itself.
 
 
A more trivial approach is to write a program that will make a copy of any stream of data that it is directed to, and then direct it at itself. In this case the program is treated as both executable code, and as data to be manipulated. This approach is common in most self-replicating systems, including biological life, and is simpler as it does not require the program to contain a complete description of itself.
 
  
 
一种更简单的方法是编写一个程序,这个程序将复制它所指向的任何数据流,然后把程序指向自己。在这种情况下,程序既被当作可执行代码,也被当作要操作的数据。这种方法在包括生物生命在内的大多数自复制系统中都很常见,而且更简单,因为它不需要程序包含对自身的完整描述。
 
一种更简单的方法是编写一个程序,这个程序将复制它所指向的任何数据流,然后把程序指向自己。在这种情况下,程序既被当作可执行代码,也被当作要操作的数据。这种方法在包括生物生命在内的大多数自复制系统中都很常见,而且更简单,因为它不需要程序包含对自身的完整描述。
  
 
In many programming languages an empty program is legal, and executes without producing errors or other output. The output is thus the same as the source code, so the program is trivially self-reproducing.
 
 
In many programming languages an empty program is legal, and executes without producing errors or other output. The output is thus the same as the source code, so the program is trivially self-reproducing.
 
  
 
在许多编程语言中,空程序是合法的,并且执行时不会产生错误或其他输出。因此,其输出是相同的源代码,所以这种程序是一种简单的自复制机。
 
在许多编程语言中,空程序是合法的,并且执行时不会产生错误或其他输出。因此,其输出是相同的源代码,所以这种程序是一种简单的自复制机。
第114行: 第83行:
 
In geometry a self-replicating tiling is a tiling pattern in which several congruent tiles may be joined together to form a larger tile that is similar to the original.  This is an aspect of the field of study known as tessellation.  The "sphinx" hexiamond is the only known self-replicating pentagon.  For example, four such concave pentagons can be joined together to make one with twice the dimensions. Solomon W. Golomb coined the term rep-tiles for self-replicating tilings.
 
In geometry a self-replicating tiling is a tiling pattern in which several congruent tiles may be joined together to form a larger tile that is similar to the original.  This is an aspect of the field of study known as tessellation.  The "sphinx" hexiamond is the only known self-replicating pentagon.  For example, four such concave pentagons can be joined together to make one with twice the dimensions. Solomon W. Golomb coined the term rep-tiles for self-replicating tilings.
  
在几何学中,'''<font color="#ff8000">自复制式平铺(self-replicating tiling)</font>'''是一种平铺方法,其中几个全等的图形可以连接在一起,形成一个较大的类似于原来的图形。这属于一个被称为密铺的研究领域。 称为“狮身人面像”的六块多形组 (hexiamond)是唯一已知的自我复制的五边形<ref>For an image that does not show how this replicates, see: Eric W. Weisstein. "Sphinx." From MathWorld--A Wolfram Web Resource. [http://mathworld.wolfram.com/Sphinx.html http://mathworld.wolfram.com/Sphinx.html]</ref> 。例如,4个图中的凹五边形可以一起组成一个和原形状相似但是2倍大小的凹五边形。所罗门·格伦布 <ref>For further illustrations, see [http://www.geoaustralia.com/italian/Sphinx/Guide.html Teaching TILINGS / TESSELLATIONS with Geo Sphinx]</ref>为这样的自我复制纹样创造了 rep-tiles 这个术语。
+
在几何学中,'''<font color="#ff8000">自复制式平铺 self-replicating tiling</font>'''是一种平铺方法,其中几个全等的图形可以连接在一起,形成一个较大的类似于原来的图形。这属于一个被称为'''密铺'''的研究领域。 称为“斯芬克斯 sphinx”的六块多形组 hexiamond是唯一已知的自我复制的五边形<ref>For an image that does not show how this replicates, see: Eric W. Weisstein. "Sphinx." From MathWorld--A Wolfram Web Resource. [http://mathworld.wolfram.com/Sphinx.html http://mathworld.wolfram.com/Sphinx.html]</ref> 。例如,4个图中的凹五边形可以一起组成一个和原形状相似但是2倍大小的凹五边形。所罗门·格伦布 Solomon W. Golomb <ref>For further illustrations, see [http://www.geoaustralia.com/italian/Sphinx/Guide.html Teaching TILINGS / TESSELLATIONS with Geo Sphinx]</ref>为这样的自我复制纹样创造了 rep-tiles 这个术语。
 
 
  --[[用户:粲兰|袁一博]]([[用户讨论:粲兰|讨论]])“‘狮身人面像’双锥六面体是已知唯一能自复制的五角形。”这句对应原句"The 'sphinx' hexiamond is the only known self-replicating pentagon."疑似存在几何上的逻辑错误,hexiamond并不是一个平面几何图形。
 
  --[[用户:Qige96|Ricky]]([[用户讨论:Qige96|讨论]]) 已修改
 
 
 
In 2012, [[Lee Sallows]] identified rep-tiles as a special instance of a [[self-tiling tile set]] or setiset. A setiset of order ''n'' is a set of ''n'' shapes that can be assembled in ''n'' different ways so as to form larger replicas of themselves. Setisets in which every shape is distinct are called 'perfect'.  A rep-''n'' rep-tile is just a setiset composed of ''n'' identical pieces.
 
 
 
In 2012, Lee Sallows identified rep-tiles as a special instance of a self-tiling tile set or '''<font color="#32CD32">setiset</font>'''. A setiset of order n is a set of n shapes that can be assembled in n different ways so as to form larger replicas of themselves. Setisets in which every shape is distinct are called 'perfect'.  A rep-n rep-tile is just a setiset composed of n identical pieces.
 
 
 
2012年,李·萨洛斯(Lee Sallows) 将 rep-tiles 定义为一种特殊的自平铺纹样集(setiset)。一组 ''n'' 阶的复制品是一组 ''n'' 个形状的复制品,它们可以以 ''n'' 种不同的方式组合,以便形成更大的自复制产物。每个形状各不相同的自平铺纹样集被称为“完美的”。n次重复的 rep-tile 只是由 n 个相同部分组成的一个集合。
 
  --[[用户:粲兰|袁一博]]([[用户讨论:粲兰|讨论]])“setiset”找不到合适的翻译。
 
  
  
 +
2012年,李·萨洛斯 Lee Sallows将 rep-tiles 定义为一种特殊的自平铺纹样集或组 。一组 ''n'' 阶的复制品是一组 ''n'' 个形状的复制品,它们可以以 ''n'' 种不同的方式组合,以便形成更大的自复制产物。每个形状各不相同的自平铺纹样集被称为“完美的”。n次重复的 rep-tile 只是由 n 个相同部分组成的一个集合。
 
{|
 
{|
 
|- style="vertical-align:bottom;"
 
|- style="vertical-align:bottom;"
第137行: 第97行:
 
===自复制的粘土晶体===
 
===自复制的粘土晶体===
  
One form of natural self-replication that isn't based on DNA or RNA occurs in clay crystals.<ref>{{cite web|url=http://www.bbc.com/earth/story/20160823-the-idea-that-life-began-as-clay-crystals-is-50-years-old |title=The idea that life began as clay crystals is 50 years old |publisher=bbc.com |date=2016-08-24 |accessdate=2019-11-10}}</ref> Clay consists of a large number of small crystals, and clay is an environment that promotes crystal growth. Crystals consist of a regular lattice of atoms and are able to grow if e.g. placed in a water solution containing the crystal components; automatically arranging atoms at the crystal boundary into the crystalline form. Crystals may have irregularities where the regular atomic structure is broken, and when crystals grow, these irregularities may propagate, creating a form of self-replication of crystal irregularities. Because these irregularities may affect the probability of a crystal breaking apart to form new crystals, crystals with such irregularities could even be considered to undergo evolutionary development.
+
粘土晶体中存在一种不基于 DNA RNA 的天然自复制。<ref>{{cite web|url=http://www.bbc.com/earth/story/20160823-the-idea-that-life-began-as-clay-crystals-is-50-years-old |title=The idea that life began as clay crystals is 50 years old |publisher=bbc.com |date=2016-08-24 |accessdate=2019-11-10}}</ref>粘土由大量的小晶体组成,粘土是促进晶体生长的环境。晶体由规则的原子晶格组成的,将其放置在含有晶体成分的水溶液中能够生长,并自动地将晶体边界上的原子排列成晶体形式。当正常的原子结构被破坏时,晶体可能具有不规则性,当晶体生长时,这些不规则性可能会传播,形成一种不规则晶体的自我复制。由于这些不规则结构可能会影响晶体分裂形成新晶体的概率,因此这种不规则结构的晶体甚至可以被认为是在经历演化过程。
 
 
One form of natural self-replication that isn't based on DNA or RNA occurs in clay crystals. Clay consists of a large number of small crystals, and clay is an environment that promotes crystal growth. Crystals consist of a regular lattice of atoms and are able to grow if e.g. placed in a water solution containing the crystal components; automatically arranging atoms at the crystal boundary into the crystalline form. Crystals may have irregularities where the regular atomic structure is broken, and when crystals grow, these irregularities may propagate, creating a form of self-replication of crystal irregularities. Because these irregularities may affect the probability of a crystal breaking apart to form new crystals, crystals with such irregularities could even be considered to undergo evolutionary development.
 
 
 
粘土晶体中存在一种不基于 DNA 或 RNA 的天然自复制。粘土由大量的小晶体组成,粘土是促进晶体生长的环境。晶体由规则的原子晶格组成的,将其放置在含有晶体成分的水溶液中能够生长,并自动地将晶体边界上的原子排列成晶体形式。当正常的原子结构被破坏时,晶体可能具有不规则性,当晶体生长时,这些不规则性可能会传播,形成一种不规则晶体的自我复制。由于这些不规则结构可能会影响晶体分裂形成新晶体的概率,因此这种不规则结构的晶体甚至可以被认为是在经历演化过程。
 
  
  
 
===应用===
 
===应用===
  
It is a long-term goal of some engineering sciences to achieve a [[clanking replicator]], a material device that can self-replicate.  The usual reason is to achieve a low cost per item while retaining the utility of a manufactured good.  Many authorities say that in the limit, the cost of self-replicating items should approach the cost-per-weight of wood or other biological substances, because self-replication avoids the costs of [[labour (economics)|labor]], [[Capital (economics)|capital]] and [[distribution (business)|distribution]] in conventional [[factory|manufactured goods]].
+
一些工程科学的长期目标是制造出一种可以自复制的'''<font color="ff8000">铿锵复制机 clanking replicator''' </font>。通常的原因是为了在保证产品的功效的同时降低每件商品的成本。许多权威人士表示,自复制产品的成本应该能逼近木材或其他生物材质的单位重量成本,因为自我复制不需要传统工业产品所需的劳动力、资本和分销成本。
 
 
It is a long-term goal of some engineering sciences to achieve a clanking replicator, a material device that can self-replicate.  The usual reason is to achieve a low cost per item while retaining the utility of a manufactured good.  Many authorities say that in the limit, the cost of self-replicating items should approach the cost-per-weight of wood or other biological substances, because self-replication avoids the costs of labor, capital and distribution in conventional manufactured goods.
 
 
 
一些工程科学的长期目标是制造出一种可以自复制的铿锵复制机(clanking replicator)。通常的原因是为了在保证产品的功效的同时降低每件商品的成本。许多权威人士表示,自复制产品的成本应该能逼近木材或其他生物材质的单位重量成本,因为自我复制不需要传统工业产品所需的劳动力、资本和分销成本。
 
 
 
  
A fully novel artificial replicator is a reasonable near-term goal.
 
 
A fully novel artificial replicator is a reasonable near-term goal.
 
  
 
制造出一个全新的人工复制机是一个合理的近期目标。
 
制造出一个全新的人工复制机是一个合理的近期目标。
  
  
A [[NASA]] study recently placed the complexity of a [[clanking replicator]] at approximately that of [[Intel]]'s [[Pentium (brand)|Pentium]] 4 CPU.<ref>{{cite web|url=http://www.niac.usra.edu/files/studies/final_report/883Toth-Fejel.pdf |title=Modeling Kinematic Cellular Automata Final Report |publisher= |date=April 30, 2004 |accessdate=2013-10-22}}</ref> That is, the technology is achievable with a relatively small engineering group in a reasonable commercial time-scale at a reasonable cost.
+
美国宇航局最近的一项研究表明,铿锵复制机的复杂度大约相当于英特尔奔腾4处理器的复杂度。<ref>{{cite web|url=http://www.niac.usra.edu/files/studies/final_report/883Toth-Fejel.pdf |title=Modeling Kinematic Cellular Automata Final Report |publisher= |date=April 30, 2004 |accessdate=2013-10-22}}</ref> 也就是说,这项技术在一个合理的商业时间规模内,是可以由一个相对较小的工程团队以一个合理的成本实现的。
 
 
A NASA study recently placed the complexity of a clanking replicator at approximately that of Intel's Pentium 4 CPU.  That is, the technology is achievable with a relatively small engineering group in a reasonable commercial time-scale at a reasonable cost.
 
 
 
美国宇航局最近的一项研究表明,铿锵复制机的复杂度大约相当于英特尔奔腾4处理器的复杂度。也就是说,这项技术在一个合理的商业时间规模内,是可以由一个相对较小的工程团队以一个合理的成本实现的。
 
 
 
 
 
Given the currently keen interest in biotechnology and the high levels of funding in that field, attempts to exploit the replicative ability of existing cells are timely, and may easily lead to significant insights and advances.
 
  
Given the currently keen interest in biotechnology and the high levels of funding in that field, attempts to exploit the replicative ability of existing cells are timely, and may easily lead to significant insights and advances.
 
  
 
目前学术界对生物技术的有着浓厚兴趣,这一领域的也有大量资金,这正是尝试利用现有细胞的复制能力的时候,而且可以期望产生重大的洞察和进展。
 
目前学术界对生物技术的有着浓厚兴趣,这一领域的也有大量资金,这正是尝试利用现有细胞的复制能力的时候,而且可以期望产生重大的洞察和进展。
  
  
A variation of self replication is of practical relevance in [[compiler]] construction, where a similar [[bootstrapping]] problem occurs as in natural self replication. A compiler ([[phenotype]]) can be applied on the compiler's own [[source code]] ([[genotype]]) producing the compiler itself. During compiler development, a modified ([[Mutation|mutated]]) source is used to create the next generation of the compiler. This process differs from natural self-replication in that the process is directed by an engineer, not by the subject itself.
+
自复制的一种变体在编译器构造中具有实际意义,在天然自复制中也会出现类似的自我改进现象。编译器(表现型)可以应用于编译器自身的源代码(基因型) ,从而产生编译器本身。在编译器开发过程中,一般使用修改(变异)的源代码来创建下一代编译器。这个过程不同于天然的自我复制,因为这个过程是由工程师指导的,而不是复制机本身。
 
 
A variation of self replication is of practical relevance in compiler construction, where a similar bootstrapping problem occurs as in natural self replication. A compiler (phenotype) can be applied on the compiler's own source code (genotype) producing the compiler itself. During compiler development, a modified (mutated) source is used to create the next generation of the compiler. This process differs from natural self-replication in that the process is directed by an engineer, not by the subject itself.
 
 
 
自复制的一种变体在编译器构造中具有实际意义,在天然自复制中也会出现类似的自我改进现象。编译器(表现型)可以应用于编译器自身的源代码(基因型) ,从而产生编译器本身。在编译器开发过程中,一般使用修改(变异)的源代码来创建下一代编译器。这个过程不同于天然的自我复制,因为这个过程是由工程师指导的,而不是复制机本身。
 
 
 
 
 
  
==Mechanical self-replication  机械自复制==
 
  
  
 +
==机械中的自复制==
  
 
{{Main|Self-replicating machine}}
 
{{Main|Self-replicating machine}}
  
 +
机器人学领域的一项活动就是机器的自复制。由于所有机器人(至少在现代)都有相当数量的相同特性,一个自复制机器人(或者可能是一群机器人)需要做到以下几点:
  
 
 
 
 
 
An activity in the field of robots is the self-replication of machines. Since all robots (at least in modern times) have a fair number of the same features, a self-replicating robot (or possibly a hive of robots) would need to do the following:
 
 
An activity in the field of robots is the self-replication of machines. Since all robots (at least in modern times) have a fair number of the same features, a self-replicating robot (or possibly a hive of robots) would need to do the following:
 
 
机器人学(robotics)领域的一项活动就是机器的自复制。由于所有机器人(至少在现代)都有相当数量的相同特性,一个自复制机器人(或者可能是一群机器人)需要做到以下几点:
 
 
 
 
 
 
*Obtain construction materials
 
 
*获得构建材料
 
*获得构建材料
  
 
 
*Manufacture new parts including its smallest parts and thinking apparatus
 
 
*制造新零件,包括最小的零件和思维组件
 
*制造新零件,包括最小的零件和思维组件
  
 
 
*Provide a consistent power source
 
 
*提供一个稳定一致的动力源
 
*提供一个稳定一致的动力源
  
 
 
*Program the new members
 
 
*为新成员编程
 
*为新成员编程
  
 
 
*error correct any mistakes in the offspring
 
 
*改正子代产物的任何错误
 
*改正子代产物的任何错误
  
  
 +
在纳米级别上,组装者也可能被设计成在自身动力下进行自复制。这反过来又导致了“灰蛊 grey goo” 版本的世界末日,就像在诸如《花开 Bloom》,《掠食 Prey》和《递归Recursion》这样的科幻小说中描述的那样。
  
  
 +
美国前瞻协会已经为机械自复制领域的研究者们发布了指导方针。<ref>{{cite web|url=http://foresight.org/guidelines/ |title=Molecular Nanotechnology Guidelines |publisher=Foresight.org |date= |accessdate=2013-10-22}}</ref> 指导方针建议研究者使用一些特定的技术来防止机械复制因子失控,比如使用广播结构 broadcast architecture。
  
  
On a [[Nanotechnology|nano]] scale, [[Assembler (nanotechnology)|assemblers]] might also be designed to self-replicate under their own power. This, in turn, has given rise to the "[[grey goo]]" version of [[Armageddon]], as featured in such science fiction novels as ''[[Bloom (novel)|Bloom]]'', ''[[Prey (novel)|Prey]]'', and ''[[Recursion (novel)|Recursion]]''.
+
关于与工业时代相关的机械复制的详细文章,请参阅'''<font color="#ff8000">大规模生产 mass production</font>'''
 
 
On a nano scale, assemblers might also be designed to self-replicate under their own power. This, in turn, has given rise to the "grey goo" version of Armageddon, as featured in such science fiction novels as Bloom, Prey, and Recursion.
 
  
在纳米级别上,组装者也可能被设计成在自身动力下进行自复制。这反过来又导致了“灰蛊”(grey goo)版本的世界末日,就像在诸如《花开》,《掠食》和《递归》这样的科幻小说中描述的那样。
 
  
 
+
==研究领域==
 
 
 
 
 
 
The [[Foresight Institute]] has published guidelines for researchers in mechanical self-replication.<ref>{{cite web|url=http://foresight.org/guidelines/ |title=Molecular Nanotechnology Guidelines |publisher=Foresight.org |date= |accessdate=2013-10-22}}</ref> The guidelines recommend that researchers use several specific techniques for preventing mechanical replicators from getting out of control, such as using a [[broadcast architecture]].
 
 
 
The Foresight Institute has published guidelines for researchers in mechanical self-replication. The guidelines recommend that researchers use several specific techniques for preventing mechanical replicators from getting out of control, such as using a broadcast architecture.
 
 
 
美国前瞻协会已经为机械自复制领域的研究者们发布了指导方针。指导方针建议研究者使用一些特定的技术来防止机械复制因子失控,比如使用广播结构。
 
 
 
 
 
 
 
 
 
 
 
For a detailed article on mechanical reproduction as it relates to the industrial age see [[mass production]].
 
 
 
For a detailed article on mechanical reproduction as it relates to the industrial age see mass production.
 
 
 
关于与工业时代相关的机械复制的详细文章,请参阅'''<font color="#ff8000">大规模生产(mass production)</font>'''。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==Fields  研究领域==
 
  
  
 
{{refimprove section|date=August 2017}}
 
{{refimprove section|date=August 2017}}
  
 
 
Research has occurred in the following areas:
 
 
Research has occurred in the following areas:
 
  
 
以下领域已开展的与自复制相关的研究:
 
以下领域已开展的与自复制相关的研究:

2020年11月20日 (五) 16:38的版本

本词条已由RickyParadoxist@Paradoxer审校。


DNA分子结构

自复制 Self-replication是一个动力系统任何能产生与自身相同或相似的复制体的的行为。生物细胞,在适当的环境下,通过细胞分裂进行繁殖。在细胞分裂过程中,DNA 被复制,并在生殖过程中传递给后代。生物病毒可以复制,但只能通过感染过程控制细胞的生殖机制。有害的朊病毒蛋白可以通过将正常的蛋白质转化为反常形式来复制。[1]计算机病毒利用计算机上已有的硬件和软件进行复制。自我复制机器人学一直是一个研究领域,也是科幻小说中的一个兴趣主题。任何不能完美复制的自复制机制(变异)都会经历遗传变异,产生自身的变异体。这些变异体将受到自然选择的影响,因为有些变异会比其他变异更好地在当前环境中生存,并将超越他们。


综述

理论

约翰·冯·诺依曼 John_von_Neumann的早期研究[2]表明复制因子有几个部分:

  • 复制机 replicator的编码表示
  • 一种能复制编码后的复制机表示的机制
  • 一种能在复制机所在环境中启动构建过程的机制


这种模式可能有例外,尽管尚未由任何发现。例如,科学家们已经接近于在 RNA 单体和转录酶的“环境”中构建可复制的RNA。在这种情况下,身体就是基因组,专门的复制机制是外部的。对外部复制机制的需求尚未被克服,这种系统更准确地描述为“辅助复制”而不是“自我复制”。


然而,最简单的可能情况是只有一个基因组存在。如果没有一些自我繁殖步骤的说明,一个只有基因组的系统可能被描述为类似于晶体的东西会更为恰当。


自复制的种类

最近的研究[3]已经开始对复制者进行分类,通常基于它们所需要的支持程度。


  • 天然复制机 Natural replicators的设计全部或绝大部分不经人手,浑然天成。这样的系统包含自然的生命形式。
  • 无机复制机 Autotrophic replicators可以在自然环境下进行自我复制。它们自己会收集自身的物质。据推测,非生物的无机复制因子可以由人类设计而成,并且可以轻易按照人类人品的规格去设计。
  • 自生产系统 Self-reproductive systems存在于假想当中,可以利用工业原料,例如金属棒和金属丝,以产生自身的拷贝。
  • 自组装系统 Self-assembling systems自动将它们各种已完成的部分组装起来。这种系统的简单例子已经在宏观尺度得到展示。


The design space for machine replicators is very broad. A comprehensive study[4] to date by Robert Freitas and Ralph Merkle has identified 137 design dimensions grouped into a dozen separate categories, including: (1) Replication Control, (2) Replication Information, (3) Replication Substrate, (4) Replicator Structure, (5) Passive Parts, (6) Active Subunits, (7) Replicator Energetics, (8) Replicator Kinematics, (9) Replication Process, (10) Replicator Performance, (11) Product Structure, and (12) Evolvability.

The design space for machine replicators is very broad. A comprehensive study to date by Robert Freitas and Ralph Merkle has identified 137 design dimensions grouped into a dozen separate categories, including: (1) Replication Control, (2) Replication Information, (3) Replication Substrate, (4) Replicator Structure, (5) Passive Parts, (6) Active Subunits, (7) Replicator Energetics, (8) Replicator Kinematics, (9) Replication Process, (10) Replicator Performance, (11) Product Structure, and (12) Evolvability.

机械复制机的设计空间非常广阔。迄今为止,罗伯特·弗雷塔斯 Robert Freitas和拉尔夫·默克尔 Ralph Merkle的综合研究[5] 已经确定了137个设计维度并将其分为十几个独立的类别,包括:

(1)复制控制,
(2)复制信息,
(3)复制基质,
(4)复制机结构,
(5)被动部件,
(6)主动子单元,
(7)复制机能量学,
(8)复制机运动学,
(9)复制过程,
(10)复制机性能,
(11)产物结构,
(12)可演化性。


一种自复制的计算机程序


计算机科学中,quine是一种自我复制的计算机程序,当执行时,输出自己的代码。例如,利用Python语言编写的一个 quine 如下:

a='a=%r;print(a%%a)';print(a%a)


一种更简单的方法是编写一个程序,这个程序将复制它所指向的任何数据流,然后把程序指向自己。在这种情况下,程序既被当作可执行代码,也被当作要操作的数据。这种方法在包括生物生命在内的大多数自复制系统中都很常见,而且更简单,因为它不需要程序包含对自身的完整描述。


在许多编程语言中,空程序是合法的,并且执行时不会产生错误或其他输出。因此,其输出是相同的源代码,所以这种程序是一种简单的自复制机。


自复制式平铺

In geometry a self-replicating tiling is a tiling pattern in which several congruent tiles may be joined together to form a larger tile that is similar to the original. This is an aspect of the field of study known as tessellation. The "sphinx" hexiamond is the only known self-replicating pentagon.[6] For example, four such concave pentagons can be joined together to make one with twice the dimensions.[7] Solomon W. Golomb coined the term rep-tiles for self-replicating tilings.

In geometry a self-replicating tiling is a tiling pattern in which several congruent tiles may be joined together to form a larger tile that is similar to the original. This is an aspect of the field of study known as tessellation. The "sphinx" hexiamond is the only known self-replicating pentagon. For example, four such concave pentagons can be joined together to make one with twice the dimensions. Solomon W. Golomb coined the term rep-tiles for self-replicating tilings.

在几何学中,自复制式平铺 self-replicating tiling是一种平铺方法,其中几个全等的图形可以连接在一起,形成一个较大的类似于原来的图形。这属于一个被称为密铺的研究领域。 称为“斯芬克斯 sphinx”的六块多形组 hexiamond是唯一已知的自我复制的五边形[8] 。例如,4个图中的凹五边形可以一起组成一个和原形状相似但是2倍大小的凹五边形。所罗门·格伦布 Solomon W. Golomb [9]为这样的自我复制纹样创造了 rep-tiles 这个术语。


2012年,李·萨洛斯 Lee Sallows将 rep-tiles 定义为一种特殊的自平铺纹样集或组 。一组 n 阶的复制品是一组 n 个形状的复制品,它们可以以 n 种不同的方式组合,以便形成更大的自复制产物。每个形状各不相同的自平铺纹样集被称为“完美的”。n次重复的 rep-tile 只是由 n 个相同部分组成的一个集合。

Four 'sphinx' hexiamonds can be put together to form another sphinx.
A perfect setiset of order 4


自复制的粘土晶体

粘土晶体中存在一种不基于 DNA 或 RNA 的天然自复制。[10]粘土由大量的小晶体组成,粘土是促进晶体生长的环境。晶体由规则的原子晶格组成的,将其放置在含有晶体成分的水溶液中能够生长,并自动地将晶体边界上的原子排列成晶体形式。当正常的原子结构被破坏时,晶体可能具有不规则性,当晶体生长时,这些不规则性可能会传播,形成一种不规则晶体的自我复制。由于这些不规则结构可能会影响晶体分裂形成新晶体的概率,因此这种不规则结构的晶体甚至可以被认为是在经历演化过程。


应用

一些工程科学的长期目标是制造出一种可以自复制的铿锵复制机 clanking replicator 。通常的原因是为了在保证产品的功效的同时降低每件商品的成本。许多权威人士表示,自复制产品的成本应该能逼近木材或其他生物材质的单位重量成本,因为自我复制不需要传统工业产品所需的劳动力、资本和分销成本。


制造出一个全新的人工复制机是一个合理的近期目标。


美国宇航局最近的一项研究表明,铿锵复制机的复杂度大约相当于英特尔奔腾4处理器的复杂度。[11] 也就是说,这项技术在一个合理的商业时间规模内,是可以由一个相对较小的工程团队以一个合理的成本实现的。


目前学术界对生物技术的有着浓厚兴趣,这一领域的也有大量资金,这正是尝试利用现有细胞的复制能力的时候,而且可以期望产生重大的洞察和进展。


自复制的一种变体在编译器构造中具有实际意义,在天然自复制中也会出现类似的自我改进现象。编译器(表现型)可以应用于编译器自身的源代码(基因型) ,从而产生编译器本身。在编译器开发过程中,一般使用修改(变异)的源代码来创建下一代编译器。这个过程不同于天然的自我复制,因为这个过程是由工程师指导的,而不是复制机本身。


机械中的自复制

机器人学领域的一项活动就是机器的自复制。由于所有机器人(至少在现代)都有相当数量的相同特性,一个自复制机器人(或者可能是一群机器人)需要做到以下几点:

  • 获得构建材料
  • 制造新零件,包括最小的零件和思维组件
  • 提供一个稳定一致的动力源
  • 为新成员编程
  • 改正子代产物的任何错误


在纳米级别上,组装者也可能被设计成在自身动力下进行自复制。这反过来又导致了“灰蛊 grey goo” 版本的世界末日,就像在诸如《花开 Bloom》,《掠食 Prey》和《递归Recursion》这样的科幻小说中描述的那样。


美国前瞻协会已经为机械自复制领域的研究者们发布了指导方针。[12] 指导方针建议研究者使用一些特定的技术来防止机械复制因子失控,比如使用广播结构 broadcast architecture。


关于与工业时代相关的机械复制的详细文章,请参阅大规模生产 mass production


研究领域

模板:Refimprove section


以下领域已开展的与自复制相关的研究:



  • Biology studies natural replication and replicators, and their interaction. These can be an important guide to avoid design difficulties in self-replicating machinery.
  • Biology studies natural replication and replicators, and their interaction. These can be an important guide to avoid design difficulties in self-replicating machinery.

生物学研究自然复制和复制因子及其相互作用。这些可以成为避免自我复制机器设计困难的重要指导。


  • In Chemistry self-replication studies are typically about how a specific set of molecules can act together to replicate each other within the set [13] (often part of Systems chemistry field).
  • In Chemistry self-replication studies are typically about how a specific set of molecules can act together to replicate each other within the set [15] (often part of Systems chemistry field).
  • 在化学领域,自我复制研究通常特指关于一组特定的分子如何在这个分子集群(通常是系统化学领域的一部分)中共同作用以复制对方[15]。


  • Memetics studies ideas and how they propagate in human culture. Memes require only small amounts of material, and therefore have theoretical similarities to viruses and are often described as viral.
  • Memetics studies ideas and how they propagate in human culture. Memes require only small amounts of material, and therefore have theoretical similarities to viruses and are often described as viral.
  • 模因论研究思想及其在人类文化中的传播。模因只需要很少的材料,因此在理论上与病毒相似,通常被称为病毒性的。



  • Nanotechnology or more precisely, molecular nanotechnology is concerned with making nano scale assemblers. Without self-replication, capital and assembly costs of molecular machines become impossibly large.
  • 纳米技术或者更准确地说,分子纳米技术是关于制造纳米级的组装工具。如果没有自我复制,分子机器的资本和组装成本就会变得不可思议的高。



  • Space resources: NASA has sponsored a number of design studies to develop self-replicating mechanisms to mine space resources. Most of these designs include computer-controlled machinery that copies itself.
  • Space resources: NASA has sponsored a number of design studies to develop self-replicating mechanisms to mine space resources. Most of these designs include computer-controlled machinery that copies itself.
  • 空间资源: 美国航天局资助了一些设计研究,通过开发自我复制机制来开采空间资源。这些设计大多数包括计算机控制的可复制自己的机器。


  • Computer security: Many computer security problems are caused by self-reproducing computer programs that infect computers — computer worms and computer viruses.
  • Computer security: Many computer security problems are caused by self-reproducing computer programs that infect computers — computer worms and computer viruses.
  • 计算机安全: 许多计算机安全问题是由感染计算机的自复制计算机程序造成的——计算机蠕虫和计算机病毒。


  • In parallel computing, it takes a long time to manually load a new program on every node of a large computer cluster or distributed computing system. Automatically loading new programs using mobile agents can save the system administrator a lot of time and give users their results much quicker, as long as they don't get out of control.
  • In parallel computing, it takes a long time to manually load a new program on every node of a large computer cluster or distributed computing system. Automatically loading new programs using mobile agents can save the system administrator a lot of time and give users their results much quicker, as long as they don't get out of control.
  • 在并行计算中,在大型计算机集群或分布式计算系统的每个节点上手动加载一个新程序需要很长时间。使用移动代理程序自动加载新程序可以节省系统管理员大量的时间,并且可以更快地为用户提供结果,只要他们不失去控制。

In industry 在工业界

Space exploration and manufacturing 太空探索和制造业

The goal of self-replication in space systems is to exploit large amounts of matter with a low launch mass. For example, an autotrophic self-replicating machine could cover a moon or planet with solar cells, and beam the power to the Earth using microwaves. Once in place, the same machinery that built itself could also produce raw materials or manufactured objects, including transportation systems to ship the products. Another model of self-replicating machine would copy itself through the galaxy and universe, sending information back.

The goal of self-replication in space systems is to exploit large amounts of matter with a low launch mass. For example, an autotrophic self-replicating machine could cover a moon or planet with solar cells, and beam the power to the Earth using microwaves. Once in place, the same machinery that built itself could also produce raw materials or manufactured objects, including transportation systems to ship the products. Another model of self-replicating machine would copy itself through the galaxy and universe, sending information back.

太空系统中自复制的目标是利用低发射质量的大量物质。例如,一个自养自复制机械可以用太阳能电池覆盖月球或行星,并通过微波将能量传送到地球。一旦就位,自己建造的同样的机器也可以生产原材料或制成品,包括运输产品的运输系统。另一个自复制机械模型会在星系和宇宙中复制自己,把信息传回来。



In general, since these systems are autotrophic, they are the most difficult and complex known replicators. They are also thought to be the most hazardous, because they do not require any inputs from human beings in order to reproduce.

In general, since these systems are autotrophic, they are the most difficult and complex known replicators. They are also thought to be the most hazardous, because they do not require any inputs from human beings in order to reproduce.

一般来说,由于这些系统是自养的,他们是已知最困难和复杂的复制因子。它们也被认为是最危险的复制因子,因为它们不需要人类的任何投入来繁殖。



A classic theoretical study of replicators in space is the 1980 NASA study of autotrophic clanking replicators, edited by Robert Freitas.[14]

A classic theoretical study of replicators in space is the 1980 NASA study of autotrophic clanking replicators, edited by Robert Freitas.

一个关于太空中复制因子的经典理论研究是1980年由 NASA 的罗伯特·弗雷塔斯(Robert Freitas)编辑的关于自养铿锵复制因子的研究。



Much of the design study was concerned with a simple, flexible chemical system for processing lunar regolith, and the differences between the ratio of elements needed by the replicator, and the ratios available in regolith. The limiting element was Chlorine, an essential element to process regolith for Aluminium. Chlorine is very rare in lunar regolith, and a substantially faster rate of reproduction could be assured by importing modest amounts.

Much of the design study was concerned with a simple, flexible chemical system for processing lunar regolith, and the differences between the ratio of elements needed by the replicator, and the ratios available in regolith. The limiting element was Chlorine, an essential element to process regolith for Aluminium. Chlorine is very rare in lunar regolith, and a substantially faster rate of reproduction could be assured by importing modest amounts.

大部分的设计研究都关注于采用一个简单、灵活的化学系统来处理月球表面的风化层,以及复制因子所需要的元素比率和从风化层中获得的元素比率之间的差异。限制元素是氯,它是处理风化层以获得铝的一个必不可少的元素。氯在月球的风化层中非常罕见,通过投入适量的氯,可以保证更快的生殖速度。



The reference design specified small computer-controlled electric carts running on rails. Each cart could have a simple hand or a small bull-dozer shovel, forming a basic robot.

The reference design specified small computer-controlled electric carts running on rails. Each cart could have a simple hand or a small bull-dozer shovel, forming a basic robot.

参考设计采用了小型计算机控制的在轨道上运行的电动车。每个推车可以有一个简单的手或一个小型推土机铲,形成一个基本的机器人。



Power would be provided by a "canopy" of solar cells supported on pillars. The other machinery could run under the canopy.

Power would be provided by a "canopy" of solar cells supported on pillars. The other machinery could run under the canopy.

电力将由支撑在支柱上的“天篷”状的太阳能电池提供。其他的机器可以在天篷下面运转。



A "casting robot" would use a robotic arm with a few sculpting tools to make plaster molds. Plaster molds are easy to make, and make precise parts with good surface finishes. The robot would then cast most of the parts either from non-conductive molten rock (basalt) or purified metals. An electric oven melted the materials.

A "casting robot" would use a robotic arm with a few sculpting tools to make plaster molds. Plaster molds are easy to make, and make precise parts with good surface finishes. The robot would then cast most of the parts either from non-conductive molten rock (basalt) or purified metals. An electric oven melted the materials.

一个“铸造机器人”将使用一个机械手臂和一些雕刻工具来制作石膏模具。石膏模具易于制作,而且能够生产表面光洁度好且精密的零件。然后,机器人将用非导电熔岩(玄武岩)或纯金属铸造大部分零件。它内部的电炉可将这些材料熔化。



A speculative, more complex "chip factory" was specified to produce the computer and electronic systems, but the designers also said that it might prove practical to ship the chips from Earth as if they were "vitamins".

A speculative, more complex "chip factory" was specified to produce the computer and electronic systems, but the designers also said that it might prove practical to ship the chips from Earth as if they were "vitamins".

他们提出了一个探索性的、更为复杂的“芯片工厂”来生产计算机和电子系统,但设计师们还表示,将这些芯片像“维生素”一样从地球运输出去,可能会被证明是可行的。




Molecular manufacturing 分子制造




Nanotechnologists in particular believe that their work will likely fail to reach a state of maturity until human beings design a self-replicating assembler of nanometer dimensions [1].

Nanotechnologists in particular believe that their work will likely fail to reach a state of maturity until human beings design a self-replicating assembler of nanometer dimensions [2].

纳米技术学家尤其相信,在人类设计出一种纳米尺度的自复制组装器之前,他们的工作很可能无法达到成熟的状态。 Molecularassembler.com/ksrm/4.11.3.htm.



These systems are substantially simpler than autotrophic systems, because they are provided with purified feedstocks and energy. They do not have to reproduce them. This distinction is at the root of some of the controversy about whether molecular manufacturing is possible or not. Many authorities who find it impossible are clearly citing sources for complex autotrophic self-replicating systems. Many of the authorities who find it possible are clearly citing sources for much simpler self-assembling systems, which have been demonstrated. In the meantime, a Lego-built autonomous robot able to follow a pre-set track and assemble an exact copy of itself, starting from four externally provided components, was demonstrated experimentally in 2003 [3].

These systems are substantially simpler than autotrophic systems, because they are provided with purified feedstocks and energy. They do not have to reproduce them. This distinction is at the root of some of the controversy about whether molecular manufacturing is possible or not. Many authorities who find it impossible are clearly citing sources for complex autotrophic self-replicating systems. Many of the authorities who find it possible are clearly citing sources for much simpler self-assembling systems, which have been demonstrated. In the meantime, a Lego-built autonomous robot able to follow a pre-set track and assemble an exact copy of itself, starting from four externally provided components, was demonstrated experimentally in 2003 [4].

这些系统比自养系统简单得多,因为它们可被提供纯净的原料和能源。它们不需要再生这些材料。这种区别是关于分子制造是否可行的一些争论的根源。许多权威认为这是不可能的,他们明确地引证了复杂自养自复制系统的资料;而许多认同这种可能性的权威人士清楚地引用了已经被证明的更简单的自组装系统的资料。与此同时,2003年的一项实验展示了一个乐高积木自主机器人,它能够按照预先设定的轨道,从外部提供的4个组件开始,精确地组装出自己的复制品。 Molecularassembler.com/ksrm/3.23.4.htm.



Merely exploiting the replicative abilities of existing cells is insufficient, because of limitations in the process of protein biosynthesis (also see the listing for RNA).

Merely exploiting the replicative abilities of existing cells is insufficient, because of limitations in the process of protein biosynthesis (also see the listing for RNA).

仅仅利用现有细胞的复制能力是不够的,因为蛋白质的生物合成过程中存在局限性。

What is required is the rational design of an entirely novel replicator with a much wider range of synthesis capabilities.

What is required is the rational design of an entirely novel replicator with a much wider range of synthesis capabilities.

我们需要的是合理设计一种具有更广泛合成能力的全新复制因子。



In 2011, New York University scientists have developed artificial structures that can self-replicate, a process that has the potential to yield new types of materials. They have demonstrated that it is possible to replicate not just molecules like cellular DNA or RNA, but discrete structures that could in principle assume many different shapes, have many different functional features, and be associated with many different types of chemical species.[15][16]

In 2011, New York University scientists have developed artificial structures that can self-replicate, a process that has the potential to yield new types of materials. They have demonstrated that it is possible to replicate not just molecules like cellular DNA or RNA, but discrete structures that could in principle assume many different shapes, have many different functional features, and be associated with many different types of chemical species.

2011年,纽约大学的科学家们开发出了可自复制的人造结构,这一过程有产生新型材料的潜力。他们已经证明,这种结构不仅可以复制像细胞 DNA 或 RNA 这样的分子,而且可以复制能够呈现许多不同形态、具有许多不同功能特征、并与许多不同类型的化学物种相关联的离散结构。



For a discussion of other chemical bases for hypothetical self-replicating systems, see alternative biochemistry.

For a discussion of other chemical bases for hypothetical self-replicating systems, see alternative biochemistry.

有关假设的自我复制系统的其他化学基础的讨论,请参阅替代生物化学。




See also 请参阅









  • RepRap (self-replicated 3D printer)
  • 开源项目















References 参考文献

  1. "'Lifeless' prion proteins are 'capable of evolution'". BBC News. 2010-01-01. Retrieved 2013-10-22.
  2. von Neumann, John (1948). The Hixon Symposium. Pasadena, California. pp. 1–36. 
  3. Freitas, Robert; Merkle, Ralph (2004). "Kinematic Self-Replicating Machines - General Taxonomy of Replicators". Retrieved 2013-06-29.
  4. Freitas, Robert; Merkle, Ralph (2004). "Kinematic Self-Replicating Machines - Freitas-Merkle Map of the Kinematic Replicator Design Space (2003–2004)". Retrieved 2013-06-29.
  5. Freitas, Robert; Merkle, Ralph (2004). "Kinematic Self-Replicating Machines - Freitas-Merkle Map of the Kinematic Replicator Design Space (2003–2004)". Retrieved 2013-06-29.
  6. For an image that does not show how this replicates, see: Eric W. Weisstein. "Sphinx." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Sphinx.html
  7. For further illustrations, see Teaching TILINGS / TESSELLATIONS with Geo Sphinx
  8. For an image that does not show how this replicates, see: Eric W. Weisstein. "Sphinx." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Sphinx.html
  9. For further illustrations, see Teaching TILINGS / TESSELLATIONS with Geo Sphinx
  10. "The idea that life began as clay crystals is 50 years old". bbc.com. 2016-08-24. Retrieved 2019-11-10.
  11. "Modeling Kinematic Cellular Automata Final Report" (PDF). 2004-04-30. Retrieved 2013-10-22.
  12. "Molecular Nanotechnology Guidelines". Foresight.org. Retrieved 2013-10-22.
  13. Moulin, Giuseppone (2011). "Dynamic Combinatorial Self-Replicating Systems". Constitutional Dynamic Chemistry. Topics in Current Chemistry. 322. Springer. pp. 87–105. doi:10.1007/128_2011_198. ISBN 978-3-642-28343-7. PMID 21728135. 
  14. Wikisource:Advanced Automation for Space Missions
  15. Wang, Tong; Sha, Ruojie; Dreyfus, Rémi; Leunissen, Mirjam E.; Maass, Corinna; Pine, David J.; Chaikin, Paul M.; Seeman, Nadrian C. (2011). "Self-replication of information-bearing nanoscale patterns". Nature. 478 (7368): 225–228. doi:10.1038/nature10500. PMC 3192504. PMID 21993758.
  16. "Self-replication process holds promise for production of new materials". Science Daily. 2011-10-17. Retrieved 2011-10-17.


Notes

Notes

注释



  • von Neumann, J., 1966, The Theory of Self-reproducing Automata, A. Burks, ed., Univ. of Illinois Press, Urbana, IL.






  • Kenyon, R., Self-replicating tilings, in: Symbolic Dynamics and Applications (P. Walters, ed.) Contemporary Math. vol. 135 (1992), 239-264.






This page was moved from wikipedia:en:Self-replication. Its edit history can be viewed at 自复制/edithistory