更改

跳到导航 跳到搜索
删除7字节 、 2021年6月12日 (六) 09:27
第50行: 第50行:     
[[File:Confounding_factors_are_important_to_consider_in_clinical_trials.png|thumb|219x219px|混杂因素在临床试验中很重要]]
 
[[File:Confounding_factors_are_important_to_consider_in_clinical_trials.png|thumb|219x219px|混杂因素在临床试验中很重要]]
      
分层随机试验在需要对特定层进行不同权重的情况下非常有用且富有成效。 通过这种方式,研究人员可以操纵每个层次的选择机制,以放大或最小化调查结果中所需的特征。<ref>{{Cite web|url=https://www.thoughtco.com/stratified-sampling-3026731|title=Understanding Stratified Samples and How to Make Them|last=Crossman|first=Ashley|date=Jan 27, 2020|website=ThoughtCo|language=en|access-date=2020-04-07}}</ref>
 
分层随机试验在需要对特定层进行不同权重的情况下非常有用且富有成效。 通过这种方式,研究人员可以操纵每个层次的选择机制,以放大或最小化调查结果中所需的特征。<ref>{{Cite web|url=https://www.thoughtco.com/stratified-sampling-3026731|title=Understanding Stratified Samples and How to Make Them|last=Crossman|first=Ashley|date=Jan 27, 2020|website=ThoughtCo|language=en|access-date=2020-04-07}}</ref>
  −
  −
      
当研究人员打算寻找两个或多个层次之间的关联时,分层随机化很有帮助,因为简单的随机抽样会导致更大的可能出现目标群体的不平等代表性。当研究人员希望消除观察性研究中的'''<font color="#ff8000"> 混杂因素 Confounder </font>'''时,它也很有用,因为分层随机试验允许调整'''<font color="#ff8000"> 协方差 Covariances </font>'''和 '''<font color="#ff8000"> p 值 p-values </font>'''以获得更准确的结果。 <ref>{{Cite book|last=Hennekens, Charles H.|title=Epidemiology in medicine|date=1987|publisher=Little, Brown|others=Buring, Julie E., Mayrent, Sherry L.|isbn=0-316-35636-0|edition=1st|location=Boston, Massachusetts|oclc=16890223}}</ref>
 
当研究人员打算寻找两个或多个层次之间的关联时,分层随机化很有帮助,因为简单的随机抽样会导致更大的可能出现目标群体的不平等代表性。当研究人员希望消除观察性研究中的'''<font color="#ff8000"> 混杂因素 Confounder </font>'''时,它也很有用,因为分层随机试验允许调整'''<font color="#ff8000"> 协方差 Covariances </font>'''和 '''<font color="#ff8000"> p 值 p-values </font>'''以获得更准确的结果。 <ref>{{Cite book|last=Hennekens, Charles H.|title=Epidemiology in medicine|date=1987|publisher=Little, Brown|others=Buring, Julie E., Mayrent, Sherry L.|isbn=0-316-35636-0|edition=1st|location=Boston, Massachusetts|oclc=16890223}}</ref>
  −
      
与简单随机抽样相比,分层随机抽样的统计准确度也更高,因为选择代表总体的元素具有高度相关性。<ref name=":5" />与分层之间的差异相比,分层内的差异要小得多。因此,随着样本间差异的最小化,'''<font color="#ff8000"> 标准差 Standard deviation </font>'''也会随之收紧,从而导致最终结果的准确性更高,误差更小。当研究资金紧张时,这有效地减少了所需的样本量并提高了抽样的'''<font color="#ff8000"> 成本效益 Cost-effectiveness </font>'''。
 
与简单随机抽样相比,分层随机抽样的统计准确度也更高,因为选择代表总体的元素具有高度相关性。<ref name=":5" />与分层之间的差异相比,分层内的差异要小得多。因此,随着样本间差异的最小化,'''<font color="#ff8000"> 标准差 Standard deviation </font>'''也会随之收紧,从而导致最终结果的准确性更高,误差更小。当研究资金紧张时,这有效地减少了所需的样本量并提高了抽样的'''<font color="#ff8000"> 成本效益 Cost-effectiveness </font>'''。
      
在现实生活中,分层随机试验可应用于选举投票结果、社会群体收入差距调查或各国教育机会的衡量。 <ref name=":3" />
 
在现实生活中,分层随机试验可应用于选举投票结果、社会群体收入差距调查或各国教育机会的衡量。 <ref name=":3" />
387

个编辑

导航菜单