更改

跳到导航 跳到搜索
删除283字节 、 2021年6月16日 (三) 12:34
第171行: 第171行:  
Usage of the notion "emergence" may generally be subdivided into two perspectives, that of "weak emergence" and "strong emergence". One paper discussing this division is Weak Emergence, by philosopher Mark Bedau. In terms of physical systems, weak emergence is a type of emergence in which the emergent property is amenable to computer simulation or similar forms of after-the-fact analysis (for example, the formation of a traffic jam, the structure of a flight of starlings or a school of fishes, or the formation of galaxies). Crucial in these simulations is that the interacting members retain their independence. If not (for example in a chemical reaction), a new entity is formed with new, emergent properties: this is called strong emergence, which it is argued cannot be simulated or analysed.
 
Usage of the notion "emergence" may generally be subdivided into two perspectives, that of "weak emergence" and "strong emergence". One paper discussing this division is Weak Emergence, by philosopher Mark Bedau. In terms of physical systems, weak emergence is a type of emergence in which the emergent property is amenable to computer simulation or similar forms of after-the-fact analysis (for example, the formation of a traffic jam, the structure of a flight of starlings or a school of fishes, or the formation of galaxies). Crucial in these simulations is that the interacting members retain their independence. If not (for example in a chemical reaction), a new entity is formed with new, emergent properties: this is called strong emergence, which it is argued cannot be simulated or analysed.
   −
“涌现”概念的“弱涌现”和“强涌现”两种观点。一篇来源于哲学家马克 · 贝道的《弱涌现》的论述文章区分了这种概念的。 就物理系统而言,弱涌现是一种适合进行计算机模拟或类似形式的事后分析的涌现类型 (例如,交通堵塞的形成,椋鸟飞行结构或鱼群结构,又或星系的形成)。在这些模拟中至关重要的是相互作用的成员保持他们的独立性。如果没有(例如在化学反应中) ,则会形成具有新颖的、涌现的特性的新实体: 这就是所谓的强涌现,它被认为是不能被模拟或分析的。
+
“涌现”概念可以分为“弱涌现”和“强涌现”两种观点。一篇来源于哲学家'''马克·贝道 Mark Bedau'''的《弱涌现》的论述文章区分了这种概念的。就物理系统而言,弱涌现是一种适合进行计算机模拟或类似形式的事后分析的涌现类型 (例如,交通堵塞的形成,椋鸟飞行结构或鱼群结构,又或星系的形成)。在这些模拟中至关重要的是'''相互作用的成员保持他们的独立性'''。如果没有保持独立性,则会形成具有新颖的、涌现的特性的新实体(例如在化学反应):这就是所谓的强涌现,它被认为是不能被模拟或分析的。
 
  −
 
  −
 
  −
 
        第182行: 第178行:  
Some common points between the two notions are that emergence concerns new properties produced as the system grows, which is to say ones which are not shared with its components or prior states. Also, it is assumed that the properties are supervenient rather than metaphysically primitive .
 
Some common points between the two notions are that emergence concerns new properties produced as the system grows, which is to say ones which are not shared with its components or prior states. Also, it is assumed that the properties are supervenient rather than metaphysically primitive .
   −
这两个概念之间的一些共同点是,涌现与随着系统发展过程中产生的新特性有关,也就是说,这些新特性不与其组件或先前状态共享。另外,它假设这些属性是偶然事件,而不是形而上学上的原始属性。
+
这两个概念之间的一些共同点是,涌现与随着系统发展过程中产生的新特性有关,也就是说,这些新特性不包含在其系统组成部分或先前系统状态中。另外,它假设这些属性是伴生属性,而不是形而上学上的原始属性。
 
  −
 
  −
 
        第192行: 第185行:  
Weak emergence describes new properties arising in systems as a result of the interactions at an elemental level. However, Bedau stipulates that the properties can be determined only by observing or simulating the system, and not by any process of a reductionist analysis. As a consequence the emerging properties are scale dependent: they are only observable if the system is large enough to exhibit the phenomenon. Chaotic, unpredictable behaviour can be seen as an emergent phenomenon, while at a microscopic scale the behaviour of the constituent parts can be fully deterministic.
 
Weak emergence describes new properties arising in systems as a result of the interactions at an elemental level. However, Bedau stipulates that the properties can be determined only by observing or simulating the system, and not by any process of a reductionist analysis. As a consequence the emerging properties are scale dependent: they are only observable if the system is large enough to exhibit the phenomenon. Chaotic, unpredictable behaviour can be seen as an emergent phenomenon, while at a microscopic scale the behaviour of the constituent parts can be fully deterministic.
   −
弱涌现描述了由于元素层次上的相互作用而在系统中产生的新特性。然而,Bedau规定,只有通过观察或模拟系统才能确定系统的性质,而不能通过任何还原论分析过程来确定。因此,新出现的属性是与规模相关的: 它们只有在系统足够大能够展现这种现象时才能观察到。混乱、不可预知的行为可以看作是一种涌现现象,而在微观尺度上,组成部分的行为可以是完全确定的。
+
弱涌现描述了由于元素层次上的相互作用而在系统中产生的新特性。然而,贝道规定,只有通过观察或模拟系统才能确定系统的涌现性质,而不能通过任何还原论分析过程来确定。因此,新出现的属性是与规模相关的:它们只有在系统足够大,能够展现这种现象时才能观察到。混乱、不可预知的行为可以看作是一种涌现现象,而在微观尺度上,组成部分的行为可以是完全确定的。
 
  −
 
  −
 
        第202行: 第192行:  
Bedau notes that weak emergence is not a universal metaphysical solvent, as the hypothesis that consciousness is weakly emergent would not resolve the traditional philosophical questions about the physicality of consciousness. However, Bedau concludes that adopting this view would provide a precise notion that emergence is involved in consciousness, and second, the notion of weak emergence is metaphysically benign.  
 
Bedau notes that weak emergence is not a universal metaphysical solvent, as the hypothesis that consciousness is weakly emergent would not resolve the traditional philosophical questions about the physicality of consciousness. However, Bedau concludes that adopting this view would provide a precise notion that emergence is involved in consciousness, and second, the notion of weak emergence is metaphysically benign.  
   −
Mark Bedau指出,弱涌现不是一种普遍的形而上学的solvent,因为意识是弱涌现的假设不能解决关于意识的物质性的传统哲学问题。然而,Bedau 的结论是,采用这种观点将提供一个精确的概念,即涌现是包含在意识中的,其次,弱涌现的概念在形而上学上是良性的。
+
贝道指出,弱涌现不是一种普遍的形而上学的万金油概念(universal metaphysical solvent),因为意识是弱涌现的假设不能解决关于意识的物质性的传统哲学问题。然而,贝道的结论是,采用这种观点将提供一个精确的概念,即涌现是包含在意识中的,其次,弱涌现的概念在形而上学上是良性的(the notion of weak emergence is metaphysically benign)。
 
  −
 
  −
 
      +
- [[用户:Qige96|Ricky]] "universal metaphysical solvent"和"the notion of weak emergence is metaphysically benign"这两句需要有哲学素养的审校者校正
    
Strong emergence describes the direct causal action of a high-level system upon its components; qualities produced this way are [[irreducible (philosophy)|irreducible]] to the system's constituent parts {{Harv|Laughlin|2005}}. The whole is other than the sum of its parts. An example from physics of such emergence is water, which appears unpredictable even after an exhaustive study of the properties of its constituent atoms of hydrogen and oxygen.<ref>{{cite book|last= Luisi|first= Pier L.|title= The Emergence of Life: From Chemical Origins to Synthetic Biology|year= 2006|publisher= Cambridge University Press|location= Cambridge, England|isbn= 978-0521821179|page= 119|url= http://www.cambridge.org/us/academic/subjects/chemistry/organic-chemistry/emergence-life-chemical-origins-synthetic-biology|url-status=live|archiveurl= https://web.archive.org/web/20151117023700/http://www.cambridge.org/us/academic/subjects/chemistry/organic-chemistry/emergence-life-chemical-origins-synthetic-biology|archivedate= 2015-11-17}}</ref> It follows then that no simulation of the system can exist, for such a simulation would itself constitute a reduction of the system to its constituent parts. {{Harv|Bedau|1997}}.
 
Strong emergence describes the direct causal action of a high-level system upon its components; qualities produced this way are [[irreducible (philosophy)|irreducible]] to the system's constituent parts {{Harv|Laughlin|2005}}. The whole is other than the sum of its parts. An example from physics of such emergence is water, which appears unpredictable even after an exhaustive study of the properties of its constituent atoms of hydrogen and oxygen.<ref>{{cite book|last= Luisi|first= Pier L.|title= The Emergence of Life: From Chemical Origins to Synthetic Biology|year= 2006|publisher= Cambridge University Press|location= Cambridge, England|isbn= 978-0521821179|page= 119|url= http://www.cambridge.org/us/academic/subjects/chemistry/organic-chemistry/emergence-life-chemical-origins-synthetic-biology|url-status=live|archiveurl= https://web.archive.org/web/20151117023700/http://www.cambridge.org/us/academic/subjects/chemistry/organic-chemistry/emergence-life-chemical-origins-synthetic-biology|archivedate= 2015-11-17}}</ref> It follows then that no simulation of the system can exist, for such a simulation would itself constitute a reduction of the system to its constituent parts. {{Harv|Bedau|1997}}.
第212行: 第200行:  
Strong emergence describes the direct causal action of a high-level system upon its components; qualities produced this way are irreducible to the system's constituent parts . The whole is other than the sum of its parts. An example from physics of such emergence is water, which appears unpredictable even after an exhaustive study of the properties of its constituent atoms of hydrogen and oxygen. It follows then that no simulation of the system can exist, for such a simulation would itself constitute a reduction of the system to its constituent parts. .
 
Strong emergence describes the direct causal action of a high-level system upon its components; qualities produced this way are irreducible to the system's constituent parts . The whole is other than the sum of its parts. An example from physics of such emergence is water, which appears unpredictable even after an exhaustive study of the properties of its constituent atoms of hydrogen and oxygen. It follows then that no simulation of the system can exist, for such a simulation would itself constitute a reduction of the system to its constituent parts. .
   −
强涌现描述了一个高层次系统对其组成部分的直接因果作用; 这种方式产生的质量不可能还原为系统的组成部分。整体不是各部分的总和。出现这种现象的物理学例子是:即使对其组成原子氢和氧的性质进行了详尽的研究,水的形成也显得不可预测。因此,不可能存在任何对系统的仿真,因为这种仿真本身将构成对系统组成部分的简化。.
+
强涌现描述了一个高层次系统对其组成部分的直接因果作用:由强涌现产生的特性不能还原为系统的组成部分。整体不是各部分的总和。出现这种现象的物理学例子是:即使对水的组成原子氢和氧的性质进行了详尽的研究,水的形成也显得不可预测<ref>{{cite book|last= Luisi|first= Pier L.|title= The Emergence of Life: From Chemical Origins to Synthetic Biology|year= 2006|publisher= Cambridge University Press|location= Cambridge, England|isbn= 978-0521821179|page= 119|url= http://www.cambridge.org/us/academic/subjects/chemistry/organic-chemistry/emergence-life-chemical-origins-synthetic-biology|url-status=live|archiveurl= https://web.archive.org/web/20151117023700/http://www.cambridge.org/us/academic/subjects/chemistry/organic-chemistry/emergence-life-chemical-origins-synthetic-biology|archivedate= 2015-11-17}}</ref>。因此,不可能存在任何对系统的仿真,能把系统还原成其组成部分。
 
  −
 
            
====拒绝区分====
 
====拒绝区分====
  −
      
However, biologist Peter Corning has asserted that "the debate about whether or not the whole can be predicted from the properties of the parts misses the point. Wholes produce unique combined effects, but many of these effects may be co-determined by the context and the interactions between the whole and its environment(s)" {{Harv|Corning|2002}}. In accordance with his '''Synergism Hypothesis''' {{Harv|Corning 1983|2005}}, Corning also stated: "It is the [[synergistic]] effects produced by wholes that are the very cause of the evolution of complexity in nature." Novelist [[Arthur Koestler]] used the metaphor of [[Janus]] (a symbol of the unity underlying complements like open/shut, peace/war) to illustrate how the two perspectives (strong vs. weak or [[holistic]] vs. [[reductionistic]]) should be treated as non-exclusive, and should work together to address the issues of emergence {{Harv|Koestler|1969}}. Theoretical physicist PW Anderson states it this way:
 
However, biologist Peter Corning has asserted that "the debate about whether or not the whole can be predicted from the properties of the parts misses the point. Wholes produce unique combined effects, but many of these effects may be co-determined by the context and the interactions between the whole and its environment(s)" {{Harv|Corning|2002}}. In accordance with his '''Synergism Hypothesis''' {{Harv|Corning 1983|2005}}, Corning also stated: "It is the [[synergistic]] effects produced by wholes that are the very cause of the evolution of complexity in nature." Novelist [[Arthur Koestler]] used the metaphor of [[Janus]] (a symbol of the unity underlying complements like open/shut, peace/war) to illustrate how the two perspectives (strong vs. weak or [[holistic]] vs. [[reductionistic]]) should be treated as non-exclusive, and should work together to address the issues of emergence {{Harv|Koestler|1969}}. Theoretical physicist PW Anderson states it this way:
第226行: 第210行:  
However, biologist Peter Corning has asserted that "the debate about whether or not the whole can be predicted from the properties of the parts misses the point. Wholes produce unique combined effects, but many of these effects may be co-determined by the context and the interactions between the whole and its environment(s)" . In accordance with his Synergism Hypothesis , Corning also stated: "It is the synergistic effects produced by wholes that are the very cause of the evolution of complexity in nature." Novelist Arthur Koestler used the metaphor of Janus (a symbol of the unity underlying complements like open/shut, peace/war) to illustrate how the two perspectives (strong vs. weak or holistic vs. reductionistic) should be treated as non-exclusive, and should work together to address the issues of emergence . Theoretical physicist PW Anderson states it this way:
 
However, biologist Peter Corning has asserted that "the debate about whether or not the whole can be predicted from the properties of the parts misses the point. Wholes produce unique combined effects, but many of these effects may be co-determined by the context and the interactions between the whole and its environment(s)" . In accordance with his Synergism Hypothesis , Corning also stated: "It is the synergistic effects produced by wholes that are the very cause of the evolution of complexity in nature." Novelist Arthur Koestler used the metaphor of Janus (a symbol of the unity underlying complements like open/shut, peace/war) to illustrate how the two perspectives (strong vs. weak or holistic vs. reductionistic) should be treated as non-exclusive, and should work together to address the issues of emergence . Theoretical physicist PW Anderson states it this way:
   −
然而,生物学家彼得 · 康宁断言,“关于是否可以从部分组件的特性来预测整体特性的争论并没有抓住要点。整体产生独特的组合效应,但其中许多效应可能由环境和整体及其环境之间的相互作用共同决定”。根据他的协同论假说,康宁还指出: “正是整体产生的协同效应才是自然界复杂性进化的根本原因。小说家亚瑟 · 凯斯特勒'用“两面神”隐喻(两面神是开 / 关、和平 / 战争等潜在补充的统一的象征)来说明两种观点(强与弱、整体与简化论)应该如何被视不独立存在的,并且应该一起解决涌现的问题。理论物理学家 安德森 是这样说的:
+
然而,生物学家彼得·康宁断言,“关于是否可以从组成部分的特性来预测整体特性的争论并没有抓住要点。整体可以产生独特的组合效应,但其中许多效应可能由整体及其环境之间的相互作用共同决定”。根据他的协同论假说,康宁还指出: “正是整体产生的协同效应才是自然界复杂性进化的根本原因。小说家亚瑟·凯斯特勒用“两面神(Janus)”隐喻(两面神是开/关、和平/战争等潜在互补统一的象征)来说明两种观点(强涌现与弱涌现、整体论与还原论)应该如何被视不独立存在的,并且应该一起解决涌现的问题。理论物理学家P.W.安德森是这样说的:
 
  −
 
  −
 
  −
 
  −
 
  −
<blockquote>The ability to reduce everything to simple fundamental laws does not imply the ability to start from those laws and reconstruct the universe. The constructionist hypothesis breaks down when confronted with the twin difficulties of scale and complexity. At each level of complexity entirely new properties appear. Psychology is not applied biology, nor is biology applied chemistry. We can now see that the whole becomes not merely more, but very different from the sum of its parts {{Harv|Anderson|1972}}.</blockquote>
      
<blockquote>The ability to reduce everything to simple fundamental laws does not imply the ability to start from those laws and reconstruct the universe. The constructionist hypothesis breaks down when confronted with the twin difficulties of scale and complexity. At each level of complexity entirely new properties appear. Psychology is not applied biology, nor is biology applied chemistry. We can now see that the whole becomes not merely more, but very different from the sum of its parts .</blockquote>
 
<blockquote>The ability to reduce everything to simple fundamental laws does not imply the ability to start from those laws and reconstruct the universe. The constructionist hypothesis breaks down when confronted with the twin difficulties of scale and complexity. At each level of complexity entirely new properties appear. Psychology is not applied biology, nor is biology applied chemistry. We can now see that the whole becomes not merely more, but very different from the sum of its parts .</blockquote>
   −
把一切都简化为简单的基本定律的能力并不意味着从这些定律出发并重建宇宙的能力。当面对规模和复杂性的双重困难时,建构主义假设就失败了。在复杂性的每个层级上,都会出现全新的属性。心理学不是应用生物学,生物学也不是应用化学。我们现在可以看到,整体不仅变得更多,而且与各部分的总和大不相同。 / blockquote
+
把一切都简化为简单的基本定律的能力并不意味着从这些定律出发并重建宇宙的能力。当面对规模和复杂性的双重困难时,建构主义的假设就失败了。在复杂性的每个层级上,都会出现全新的属性。心理学不是应用生物学,生物学也不是应用化学。我们现在可以看到,整体不仅变得更多,而且与各部分的总和大不相同。
 
+
</blockquote>
====强烈涌现的可能性====
  −
 
      +
====强涌现的可能性====
    
Some thinkers question the plausibility of strong emergence as contravening our usual understanding of physics. Mark A. Bedau observes:
 
Some thinkers question the plausibility of strong emergence as contravening our usual understanding of physics. Mark A. Bedau observes:
第246行: 第223行:  
Some thinkers question the plausibility of strong emergence as contravening our usual understanding of physics. Mark A. Bedau observes:
 
Some thinkers question the plausibility of strong emergence as contravening our usual understanding of physics. Mark A. Bedau observes:
   −
马克 · 贝道观察到: 一些思想家质疑强涌现的合理性,认为它违背了我们对物理学的通常理解。
+
一些思想家质疑强涌现的合理性,认为它违背了我们对物理学的通常理解。马克·贝道观察到:  
 
  −
 
  −
 
  −
 
  −
 
  −
<blockquote>Although strong emergence is logically possible, it is uncomfortably like magic. How does an irreducible but supervenient downward causal power arise, since by definition it cannot be due to the aggregation of the micro-level potentialities? Such causal powers would be quite unlike anything within our scientific ken. This not only indicates how they will discomfort reasonable forms of materialism. Their mysteriousness will only heighten the traditional worry that emergence entails illegitimately getting something from nothing.<ref name = Bedau>(Bedau 1997)</ref></blockquote>
     −
<blockquote>Although strong emergence is logically possible, it is uncomfortably like magic. How does an irreducible but supervenient downward causal power arise, since by definition it cannot be due to the aggregation of the micro-level potentialities? Such causal powers would be quite unlike anything within our scientific ken. This not only indicates how they will discomfort reasonable forms of materialism. Their mysteriousness will only heighten the traditional worry that emergence entails illegitimately getting something from nothing.</blockquote
+
<blockquote>Although strong emergence is logically possible, it is uncomfortably like magic. How does an irreducible but supervenient downward causal power arise, since by definition it cannot be due to the aggregation of the micro-level potentialities? Such causal powers would be quite unlike anything within our scientific ken. This not only indicates how they will discomfort reasonable forms of materialism. Their mysteriousness will only heighten the traditional worry that emergence entails illegitimately getting something from nothing.
d
  −
尽管强涌现在逻辑上是可能的,但它就像魔术一样令人难以信服。既然从定义上看,它不可能是由于微观层面可能性的聚集而成,那么一种不可还原但伴随着向下的因果律是如何产生的呢?这种因果率与我们科学知识范围内的任何事物都完全不同。这不仅表明,将使得 合理形成的唯物主义感到不适。它们的神秘特性之后会加剧一种传统的担忧,这种担忧会导致 即涌现会引发不合理地得到一些原来没有的东西。
      +
尽管强涌现在逻辑上是可能的,但它就像魔术一样令人难以信服。既然从定义上看,它不可能是由于微观层面可能性的聚集而成,那么一种不可还原却又伴随着向下的因果律是如何产生的呢?这种因果与我们科学知识范围内的任何事物都完全不同。这不仅将使得唯物主义者感到不适,它们的神秘特性也会加剧一种传统的担忧,即涌现会引发无中生有的想法。<ref name = Bedau>(Bedau 1997)</ref>
 +
</blockquote>
     
370

个编辑

导航菜单