“规模法则”的版本间的差异
第78行: | 第78行: | ||
== 物理学中的标度律 == | == 物理学中的标度律 == | ||
+ | '''标度律 Scaling laws'''是物理原理在齐次函数数学语言中的表达。 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
如果对所有 <math>\lambda\ </math> 都满足关系{{NumBlk|2=<math>f(\lambda | 如果对所有 <math>\lambda\ </math> 都满足关系{{NumBlk|2=<math>f(\lambda | ||
x, \lambda y, \lambda z, \ldots) \equiv \lambda^{n}f (x, y, z, | x, \lambda y, \lambda z, \ldots) \equiv \lambda^{n}f (x, y, z, | ||
第97行: | 第87行: | ||
则称函数 <math>f (x, y, z,\ldots)</math> 是变量 <math>x,y,z,\ldots</math> 的 <math>n</math> 次齐次函数。 | 则称函数 <math>f (x, y, z,\ldots)</math> 是变量 <math>x,y,z,\ldots</math> 的 <math>n</math> 次齐次函数。 | ||
− | |||
− | |||
例如,<math>ax^2 + bxy + cy^2</math> 是 <math>x</math> 和 <math>y</math> 二次齐次函数,而对 <math>a, b,</math> <math>c\ </math>则是一次齐次的。 | 例如,<math>ax^2 + bxy + cy^2</math> 是 <math>x</math> 和 <math>y</math> 二次齐次函数,而对 <math>a, b,</math> <math>c\ </math>则是一次齐次的。 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
将 <math>\lambda = 1/x</math> 带入({{EquationNote|1}}),则有齐次性的另一种表达式:如果<math>f (x, y, z, | 将 <math>\lambda = 1/x</math> 带入({{EquationNote|1}}),则有齐次性的另一种表达式:如果<math>f (x, y, z, | ||
\ldots)</math>满足关系:{{NumBlk|2=<math>f(x, y, z, \ldots) = x^nf(1, y/x, | \ldots)</math>满足关系:{{NumBlk|2=<math>f(x, y, z, \ldots) = x^nf(1, y/x, | ||
第116行: | 第97行: | ||
则它是 <math>x, y, | 则它是 <math>x, y, | ||
z, \ldots</math> 的 <math>n</math> 次齐次函数。 | z, \ldots</math> 的 <math>n</math> 次齐次函数。 | ||
− | |||
− | |||
− | |||
− | |||
即等于 <math>x</math> 的 <math>n</math> 次方乘以某个以比值 <math>y/x, z/x, \ldots</math> 为变量的函数 <math>\phi</math>。 | 即等于 <math>x</math> 的 <math>n</math> 次方乘以某个以比值 <math>y/x, z/x, \ldots</math> 为变量的函数 <math>\phi</math>。 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
如果<math>f (x, y, z, \ldots)</math> 对 <math>x, y, z, \ldots</math> 是 <math>n</math> 次齐次的,则它满足欧拉定理:{{NumBlk|:|<math>x\frac{\partial f}{\partial x}+y\frac{\partial | 如果<math>f (x, y, z, \ldots)</math> 对 <math>x, y, z, \ldots</math> 是 <math>n</math> 次齐次的,则它满足欧拉定理:{{NumBlk|:|<math>x\frac{\partial f}{\partial x}+y\frac{\partial | ||
f}{\partial y}+z\frac{\partial f}{\partial z}+\cdots \equiv nf.</math>|{{EquationRef|3}}}} | f}{\partial y}+z\frac{\partial f}{\partial z}+\cdots \equiv nf.</math>|{{EquationRef|3}}}} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
在[[热力学|'''热力学 Thermodynamics''']]中,如果一个系统的标度增加 <math>\lambda</math> 倍而其强度量不发生变化,仅是该系统所有化学组分的广度量(如熵 <math>S\ </math>,能量 <math>E\ </math>,体积 <math>V\ </math>和质量 <math>m_1, m_2, \ldots</math> 等)也增加相同倍数。则有广度函数 <math>S(E, V, m_1, m_2, \ldots)</math> 在广义论证中满足齐次关系:{{NumBlk|:|<math>S(\lambda E, \lambda V, \lambda | 在[[热力学|'''热力学 Thermodynamics''']]中,如果一个系统的标度增加 <math>\lambda</math> 倍而其强度量不发生变化,仅是该系统所有化学组分的广度量(如熵 <math>S\ </math>,能量 <math>E\ </math>,体积 <math>V\ </math>和质量 <math>m_1, m_2, \ldots</math> 等)也增加相同倍数。则有广度函数 <math>S(E, V, m_1, m_2, \ldots)</math> 在广义论证中满足齐次关系:{{NumBlk|:|<math>S(\lambda E, \lambda V, \lambda | ||
{m_1}, \lambda {m_2}, \ldots ) = \lambda S(E, V, {m_1}, {m_2}, \ldots).</math>|{{EquationRef|4}}}} | {m_1}, \lambda {m_2}, \ldots ) = \lambda S(E, V, {m_1}, {m_2}, \ldots).</math>|{{EquationRef|4}}}} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
以 <math>T</math>,<math>p</math>,<math>\mu_i</math> 分别表示温度,压力和不同组分 <math>i\ </math>的化学势,根据热力学关系 <math>\partial | 以 <math>T</math>,<math>p</math>,<math>\mu_i</math> 分别表示温度,压力和不同组分 <math>i\ </math>的化学势,根据热力学关系 <math>\partial | ||
S/\partial E = 1/T\ </math>, <math>\partial S/\partial V = p/T\ </math>,和 <math>\partial S/\partial m_i = - \mu_i/T\ </math>:再由欧拉定理可得:{{NumBlk|:|<math>\frac{1}{T} (E + pV - \mu_1m_1 - \mu_2m_2 - | S/\partial E = 1/T\ </math>, <math>\partial S/\partial V = p/T\ </math>,和 <math>\partial S/\partial m_i = - \mu_i/T\ </math>:再由欧拉定理可得:{{NumBlk|:|<math>\frac{1}{T} (E + pV - \mu_1m_1 - \mu_2m_2 - | ||
\cdots) =S,</math>|{{EquationRef|5}}}} | \cdots) =S,</math>|{{EquationRef|5}}}} | ||
− | |||
− | |||
− | |||
− | |||
任何广度函数 <math>X(T, p, m_1, m_2, \ldots)\ </math>(如体积 <math>V\ </math>或者吉布斯自由能<math>E+pV-TS\ </math>)在等温等压状态下,对 <math>m_i</math> 都是一次齐次的,因此:{{NumBlk|:|<math>X = m_1 \frac{\partial X}{\partial | 任何广度函数 <math>X(T, p, m_1, m_2, \ldots)\ </math>(如体积 <math>V\ </math>或者吉布斯自由能<math>E+pV-TS\ </math>)在等温等压状态下,对 <math>m_i</math> 都是一次齐次的,因此:{{NumBlk|:|<math>X = m_1 \frac{\partial X}{\partial | ||
m_1} + m_2 \frac{\partial X}{\partial m_2} + \cdots ,</math>|{{EquationRef|6}}}} | m_1} + m_2 \frac{\partial X}{\partial m_2} + \cdots ,</math>|{{EquationRef|6}}}} | ||
− | |||
− | |||
− | |||
是重要的一类关系。 | 是重要的一类关系。 | ||
− | |||
引言交代了经典热力学语境下的标度关系。在其后发展出的统计力学中,“标度律”一词指代热力学函数和相关函数在临界点附近的齐次形式,以及这些函数中指数之间的关系。 | 引言交代了经典热力学语境下的标度关系。在其后发展出的统计力学中,“标度律”一词指代热力学函数和相关函数在临界点附近的齐次形式,以及这些函数中指数之间的关系。 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
当 <math>t = T/T_c-1\ </math>时,铁磁物质临近居里点(临界点),磁场强度 <math>H\</math>,磁化强度 <math>M\</math>以及 <math>t = T/T_c-1\ </math>满足{{NumBlk|:|<math>H = M\mid M\mid ^{\delta-1} j(t/\mid M\mid | 当 <math>t = T/T_c-1\ </math>时,铁磁物质临近居里点(临界点),磁场强度 <math>H\</math>,磁化强度 <math>M\</math>以及 <math>t = T/T_c-1\ </math>满足{{NumBlk|:|<math>H = M\mid M\mid ^{\delta-1} j(t/\mid M\mid | ||
^{1/\beta})</math>|{{EquationRef|7}}}} | ^{1/\beta})</math>|{{EquationRef|7}}}} | ||
− | |||
− | |||
其中 <math>j(x)</math> 是“标度”函数,<math>\beta</math> 和<math>\delta</math> 是临界点指数。因此由({{EquationNote|2}})和({{EquationNote|7}}),当铁磁物质趋近于临界点时<math>(H\rightarrow 0</math> 且 <math>t\rightarrow 0)\ </math>,<math>\mid H\mid</math> 是 <math> t </math> 和 <math>\mid M\mid | 其中 <math>j(x)</math> 是“标度”函数,<math>\beta</math> 和<math>\delta</math> 是临界点指数。因此由({{EquationNote|2}})和({{EquationNote|7}}),当铁磁物质趋近于临界点时<math>(H\rightarrow 0</math> 且 <math>t\rightarrow 0)\ </math>,<math>\mid H\mid</math> 是 <math> t </math> 和 <math>\mid M\mid | ||
第198行: | 第133行: | ||
<math>j(x)</math>|链接=Special:FilePath/Scaling_laws_widom_nocaption_Fig1.png]] | <math>j(x)</math>|链接=Special:FilePath/Scaling_laws_widom_nocaption_Fig1.png]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
当<math>\mid H\mid = 0+</math> 且 <math>t<0\ </math>,<math>M</math> 是自发磁化率,由({{EquationNote|7}})可得<math>\mid M\mid = (-\frac{t}{b})^\beta\ </math>,其中 <math>\beta</math> 为临界指数。在临界等温线<math>(t=0)\ </math>,当 <math>M\rightarrow 0</math> 时,我们有<math>H \sim cM\mid | 当<math>\mid H\mid = 0+</math> 且 <math>t<0\ </math>,<math>M</math> 是自发磁化率,由({{EquationNote|7}})可得<math>\mid M\mid = (-\frac{t}{b})^\beta\ </math>,其中 <math>\beta</math> 为临界指数。在临界等温线<math>(t=0)\ </math>,当 <math>M\rightarrow 0</math> 时,我们有<math>H \sim cM\mid | ||
第219行: | 第142行: | ||
方程({{EquationNote|7}})和({{EquationNote|8}})都是标度律的范例,({{EquationNote|7}})是齐次性的表述,({{EquationNote|8}})作为指数关系式则是这种齐次性的结果。 | 方程({{EquationNote|7}})和({{EquationNote|8}})都是标度律的范例,({{EquationNote|7}})是齐次性的表述,({{EquationNote|8}})作为指数关系式则是这种齐次性的结果。 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
由于<math>M = -(\partial | 由于<math>M = -(\partial | ||
F/\partial H)_T\ </math>,等温条件下自由能 <math>F</math> 可以通过积分由({{EquationNote|7}})式得出,且相应的热容 <math>C_H = -(\partial ^2 | F/\partial H)_T\ </math>,等温条件下自由能 <math>F</math> 可以通过积分由({{EquationNote|7}})式得出,且相应的热容 <math>C_H = -(\partial ^2 | ||
F/\partial T^2)_H\ </math>。由({{EquationNote|7}})式可知,在<math>H=0</math> 时 <math>C_H</math> 在临界点处依 <math>\mid t\mid ^{-\alpha}</math> 比例发散(其中 <math>t\rightarrow 0-</math> 和 <math>t\rightarrow | F/\partial T^2)_H\ </math>。由({{EquationNote|7}})式可知,在<math>H=0</math> 时 <math>C_H</math> 在临界点处依 <math>\mid t\mid ^{-\alpha}</math> 比例发散(其中 <math>t\rightarrow 0-</math> 和 <math>t\rightarrow | ||
− | 0+ </math> 各有不同的系数),临界点指数 <math>\alpha</math> 与<math>\beta</math> 和 <math>\gamma</math> | + | 0+ </math> 各有不同的系数),临界点指数 <math>\alpha</math> 与<math>\beta</math> 和 <math>\gamma</math> 满足以下标度律[9]:{{NumBlk|:|<math>\alpha +2\beta +\gamma=2. </math>|{{EquationRef|9}}}} |
− | |||
− | |||
− | + | 当 <math>2\beta+\gamma=2</math>,则有 <math>\alpha =0</math>,这通常意味着对数发散而不是幂律发散,并且在 <math>t=0+</math> 和 <math>t=0-</math> 之间存在叠加有限不连续。[4]在二维伊辛模型中,仅有对数关系而这种不连续是不存在的;而在平均场近似中情形相反。 | |
− | |||
− | |||
− | = | ||
− | ({{EquationNote|8}})和({{EquationNote|9}}) | + | |
+ | === 临界指数 Critical exponents === | ||
+ | |||
+ | ({{EquationNote|8}})和({{EquationNote|9}})分别来自Rice [10]和Scott [11]的贡献。它们大概是历史上最早版本的临界指数关系。在此之后,Domb和Sykes[12]以及Fisher[13]注意到指数 <math>\gamma</math> 实际上比平均场值<math>\gamma =1</math> 大。而在更早之前,Guggenheim的对应状态分析就清楚地表明 <math>\beta</math>值更靠近1/3而非平均场值的1/2。之后在 <math>\gamma | ||
=1</math> 和 <math>\beta \simeq 1/3\ </math>的假设下,里斯由({{EquationNote|8}})式总结出 <math>\delta = 1+1/\beta | =1</math> 和 <math>\beta \simeq 1/3\ </math>的假设下,里斯由({{EquationNote|8}})式总结出 <math>\delta = 1+1/\beta | ||
\simeq 4</math>(如今已知正确值接近5)。同时斯考特由({{EquationNote|9}})式得出 <math>\alpha =1-2\beta \simeq 1/3</math>(正确值接近1/10)。另外平均场值 <math>\delta | \simeq 4</math>(如今已知正确值接近5)。同时斯考特由({{EquationNote|9}})式得出 <math>\alpha =1-2\beta \simeq 1/3</math>(正确值接近1/10)。另外平均场值 <math>\delta | ||
=3</math>,<math>\alpha =0\ </math>。 | =3</math>,<math>\alpha =0\ </math>。 | ||
− | |||
:<math>\label{eq:10} | :<math>\label{eq:10} | ||
第251行: | 第164行: | ||
铁磁体和流体中的长程空间相关函数在临界点附近也表现出齐次性。简单起见,考虑磁场强度 <math>H=0</math> 且温度接近临界点的情况,关联函数 <math>h(r,t)</math> 作为空间分离 <math>r</math>(假设很大)的函数,如下所示:{{NumBlk|:|<math>h(r,t)=r^{-(d-2+\eta)}G(r/\xi). </math>|{{EquationRef|10}}}} | 铁磁体和流体中的长程空间相关函数在临界点附近也表现出齐次性。简单起见,考虑磁场强度 <math>H=0</math> 且温度接近临界点的情况,关联函数 <math>h(r,t)</math> 作为空间分离 <math>r</math>(假设很大)的函数,如下所示:{{NumBlk|:|<math>h(r,t)=r^{-(d-2+\eta)}G(r/\xi). </math>|{{EquationRef|10}}}} | ||
− | |||
− | |||
− | |||
− | |||
其中 <math>d</math> 是空间维度,<math>\eta</math> 是另一临界点指数,<math>\xi</math> 是关联长度(相关关系的指数衰减长度),当趋近于临界点时,其发散过程满足:{{NumBlk|:|<math>\xi\sim \mid t\mid ^{-\nu}</math>|{{EquationRef|11}}}} | 其中 <math>d</math> 是空间维度,<math>\eta</math> 是另一临界点指数,<math>\xi</math> 是关联长度(相关关系的指数衰减长度),当趋近于临界点时,其发散过程满足:{{NumBlk|:|<math>\xi\sim \mid t\mid ^{-\nu}</math>|{{EquationRef|11}}}} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
其中 <math>\nu</math> 是另外的临界指数。因此 <math>h(r,t)</math>(<math>H=0</math>)是 <math>r</math> 和 <math>\mid t\mid | 其中 <math>\nu</math> 是另外的临界指数。因此 <math>h(r,t)</math>(<math>H=0</math>)是 <math>r</math> 和 <math>\mid t\mid | ||
^{-\nu}</math> 的<math>-(d-2+\eta)\ </math>次齐次方程。标度函数 <math>G(x)</math> 具有以下性质(在常数比例因子范围内):{{NumBlk|:|<math>G(x) \sim \left\{ | ^{-\nu}</math> 的<math>-(d-2+\eta)\ </math>次齐次方程。标度函数 <math>G(x)</math> 具有以下性质(在常数比例因子范围内):{{NumBlk|:|<math>G(x) \sim \left\{ | ||
第271行: | 第173行: | ||
\infty \\ 1, & x\rightarrow 0 . \end{array} \right. </math>|{{EquationRef|12}}}} | \infty \\ 1, & x\rightarrow 0 . \end{array} \right. </math>|{{EquationRef|12}}}} | ||
− | |||
因此,在任何靠近临界点的恒温热力学状态下,当 <math>r\rightarrow \infty</math> 时,<math>h</math> 随<math>r</math> 的增加依 <math>r^{-\frac{1}{2}(d-1)}e^{-r/\xi}\ </math> 成比例衰减(参见'''[https://en.wikipedia.org/wiki/Ornstein%E2%80%93Zernike_equation? 奥恩斯泰因-泽尔尼克理论 Ornstein-Zernike theory]''')。如果相反,在固定的大 <math>r\ </math> 条件下,迫近临界点(<math>\xi \rightarrow \infty</math>),会有 <math>h(r)</math> 作为逆幂 <math>r^{-(d-2+\eta)}\ </math> 随 <math>r</math> 衰减,这也修正了在此极限条件下奥恩斯泰因-泽尔尼克理论中出现的 <math>r^{-(d-2)}</math>。标度律({{EquationNote|1=10}})及标度函数 <math>G(x)</math> 内插于这些极限之间。 | 因此,在任何靠近临界点的恒温热力学状态下,当 <math>r\rightarrow \infty</math> 时,<math>h</math> 随<math>r</math> 的增加依 <math>r^{-\frac{1}{2}(d-1)}e^{-r/\xi}\ </math> 成比例衰减(参见'''[https://en.wikipedia.org/wiki/Ornstein%E2%80%93Zernike_equation? 奥恩斯泰因-泽尔尼克理论 Ornstein-Zernike theory]''')。如果相反,在固定的大 <math>r\ </math> 条件下,迫近临界点(<math>\xi \rightarrow \infty</math>),会有 <math>h(r)</math> 作为逆幂 <math>r^{-(d-2+\eta)}\ </math> 随 <math>r</math> 衰减,这也修正了在此极限条件下奥恩斯泰因-泽尔尼克理论中出现的 <math>r^{-(d-2)}</math>。标度律({{EquationNote|1=10}})及标度函数 <math>G(x)</math> 内插于这些极限之间。 | ||
− | |||
− | |||
− | |||
− | |||
在流体研究中,由数密度 <math>\rho</math> 和 等温压缩率 <math>\chi</math>,我们可以得到一个'''[https://en.wikipedia.org/wiki/Ornstein%E2%80%93Zernike_equation? 奥恩斯泰因-泽尔尼克理论]'''的精确表达式:{{NumBlk|:|<math>\rho kT | 在流体研究中,由数密度 <math>\rho</math> 和 等温压缩率 <math>\chi</math>,我们可以得到一个'''[https://en.wikipedia.org/wiki/Ornstein%E2%80%93Zernike_equation? 奥恩斯泰因-泽尔尼克理论]'''的精确表达式:{{NumBlk|:|<math>\rho kT | ||
\chi =1+\rho \int h(r) \rm{d}\tau</math>|{{EquationRef|13}}}} | \chi =1+\rho \int h(r) \rm{d}\tau</math>|{{EquationRef|13}}}} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
其中 <math>k</math> 是'''[[玻尔兹曼常数]]''',<math>\rm{d} \tau</math> 是体积元,积分区域是整个空间。对铁磁体也有相同的关系成立,包含磁化率 <math>\chi</math>,<math>\rho</math> 与临界密度 <math>\rho_c</math> 的差值,以及磁化强度 <math>M\ </math>。在临界点处,<math>\chi</math> 无穷大,且对应积分式也发散,因为衰减长度 <math>\xi</math> 也是无穷大的。而密度 <math>\rho</math>为有限正常数 <math>\rho_c</math>,<math>T</math> 为 <math>T_c\ </math>。{{NumBlk|:|<math>(2-\eta)\nu = \gamma . </math>|{{EquationRef|14}}}}The surface tension <math>\sigma</math> in liquid-vapor equilibrium, or the analogous excess free energy per unit area of the interface between coexisting, oppositely magnetized domains, vanishes at the critical point (Curie point) proportionally to <math>(-t)^\mu</math> with <math>\mu</math> another critical-point exponent. The interfacial region has a thickness of the order of the correlation length <math>\xi</math> so <math>\sigma/\xi</math> is the free energy per unit volume associated with the interfacial region. That is in its magnitude and in its singular critical-point behavior the same free energy per unit volume as in the bulk phases, from which the heat capacity follows by two differentiations with respect to the temperature. Thus, <math>\sigma/\xi</math> vanishes proportionally to <math>(-t)^{2-\alpha}\ ;</math> so, together with ({{EquationNote|1=9}}), | 其中 <math>k</math> 是'''[[玻尔兹曼常数]]''',<math>\rm{d} \tau</math> 是体积元,积分区域是整个空间。对铁磁体也有相同的关系成立,包含磁化率 <math>\chi</math>,<math>\rho</math> 与临界密度 <math>\rho_c</math> 的差值,以及磁化强度 <math>M\ </math>。在临界点处,<math>\chi</math> 无穷大,且对应积分式也发散,因为衰减长度 <math>\xi</math> 也是无穷大的。而密度 <math>\rho</math>为有限正常数 <math>\rho_c</math>,<math>T</math> 为 <math>T_c\ </math>。{{NumBlk|:|<math>(2-\eta)\nu = \gamma . </math>|{{EquationRef|14}}}}The surface tension <math>\sigma</math> in liquid-vapor equilibrium, or the analogous excess free energy per unit area of the interface between coexisting, oppositely magnetized domains, vanishes at the critical point (Curie point) proportionally to <math>(-t)^\mu</math> with <math>\mu</math> another critical-point exponent. The interfacial region has a thickness of the order of the correlation length <math>\xi</math> so <math>\sigma/\xi</math> is the free energy per unit volume associated with the interfacial region. That is in its magnitude and in its singular critical-point behavior the same free energy per unit volume as in the bulk phases, from which the heat capacity follows by two differentiations with respect to the temperature. Thus, <math>\sigma/\xi</math> vanishes proportionally to <math>(-t)^{2-\alpha}\ ;</math> so, together with ({{EquationNote|1=9}}), | ||
:<math>\label{eq:15} | :<math>\label{eq:15} | ||
\mu + \nu = 2-\alpha= \gamma +2\beta, </math> | \mu + \nu = 2-\alpha= \gamma +2\beta, </math> | ||
− | 液-气平衡时的表面张力 <math>\sigma</math>,或共存的、相反磁化畴之间的界面单位面积上的类似过剩自由能,在临界点(居里点)与 <math>(-t)^\mu</math>(<math>\mu</math>对应此处临界点指数)成比例消失。界面区域的厚度与关联长度 <math>\xi</math> 的数量级相当,因此 <math>\sigma/\xi</math> 是与界面区域相关的单位体积自由能。在它的大小和它的奇异临界点行为中,每单位体积的自由能和在体相中是一样的,从体相中,依据关于温度的两个微分可以得出热容。因此,<math>\sigma/\xi</math> 依 <math>(-t)^{2-\alpha}\ </math> 成比例消失;再联系({{EquationNote|1=9}}) | + | 液-气平衡时的表面张力 <math>\sigma</math>,或共存的、相反磁化畴之间的界面单位面积上的类似过剩自由能,在临界点(居里点)与 <math>(-t)^\mu</math>(<math>\mu</math>对应此处临界点指数)成比例消失。界面区域的厚度与关联长度 <math>\xi</math> 的数量级相当,因此 <math>\sigma/\xi</math> 是与界面区域相关的单位体积自由能。在它的大小和它的奇异临界点行为中,每单位体积的自由能和在体相中是一样的,从体相中,依据关于温度的两个微分可以得出热容。因此,<math>\sigma/\xi</math> 依 <math>(-t)^{2-\alpha}\ </math> 成比例消失;再联系({{EquationNote|1=9}})式可以得到另一个标度关系[15]:{{NumBlk|:|<math>\mu + \nu = 2-\alpha= \gamma +2\beta,</math>|{{EquationRef|15}}}} |
− | |||
− | + | 其他标度关系 [16,17]. | |
− | + | === 临界点指数与空间维度 === | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
临界点指数取决于维数 <math>d\ </math>。人们发现,将 <math>d</math> 视为具有任意大小的连续变量可以解释说明这一观点。在一类被称为超标度的临界点指数关系中,可以清楚地看到 <math>d</math>。关联长度 <math>\xi</math> 为密度或磁化波动的相干长度。决定其大小的是体积 <math>\xi ^d</math> 中与自发波动有关的过剩自由能,且一定是 <math>kT\ </math> 阶的,在临界点处具有有限值 <math>kT_c</math> 。但在这样的微元体中,典型的波动只会产生共轭相。则自由能 <math>kT</math> 为创建区域 <math>\xi^{d-1}\ </math>的界面 <math>\sigma \xi^{d-1}\ </math>的自由能。因此,当接近临界点时,<math>\sigma \xi^{d-1}</math> 具有 <math>kT_c\ </math> 阶的有限极限。再由指数 <math>\mu</math> 和 <math>\nu\ </math>的定义可得超标度关系:{{NumBlk|:|<math>\mu = (d-1)\nu,</math>|{{EquationRef|16}}}} | 临界点指数取决于维数 <math>d\ </math>。人们发现,将 <math>d</math> 视为具有任意大小的连续变量可以解释说明这一观点。在一类被称为超标度的临界点指数关系中,可以清楚地看到 <math>d</math>。关联长度 <math>\xi</math> 为密度或磁化波动的相干长度。决定其大小的是体积 <math>\xi ^d</math> 中与自发波动有关的过剩自由能,且一定是 <math>kT\ </math> 阶的,在临界点处具有有限值 <math>kT_c</math> 。但在这样的微元体中,典型的波动只会产生共轭相。则自由能 <math>kT</math> 为创建区域 <math>\xi^{d-1}\ </math>的界面 <math>\sigma \xi^{d-1}\ </math>的自由能。因此,当接近临界点时,<math>\sigma \xi^{d-1}</math> 具有 <math>kT_c\ </math> 阶的有限极限。再由指数 <math>\mu</math> 和 <math>\nu\ </math>的定义可得超标度关系:{{NumBlk|:|<math>\mu = (d-1)\nu,</math>|{{EquationRef|16}}}} | ||
− | |||
− | + | 再由({{EquationNote|1=15}})有[16]:{{NumBlk|:|<math>d\nu = 2-\alpha = \gamma+2\beta,</math>|{{EquationRef|17}}}} | |
− | |||
− | 再由({{EquationNote|1=15}}) | ||
− | |||
− | + | 结合({{EquationNote|1=8}})和({{EquationNote|1=14}})得到[18]:{{NumBlk|:|<math>2-\eta = \frac{\delta -1}{\delta +1} d. </math>|{{EquationRef|18}}}} | |
− | |||
− | 结合({{EquationNote|1=8}})和({{EquationNote|1=14}}) | ||
− | |||
标度律({{EquationNote|1=8}}),({{EquationNote|1=9}}),({{EquationNote|1=14}})和({{EquationNote|1=15}})没有明显的和空间维数相联系,而({{EquationNote|1=16}})-({{EquationNote|1=18}})则是依赖于 <math>d</math> 的指数关系式,且仅对 <math>d<4\ </math>成立。对于 <math>d=4</math>,热力学函数中依据平均场理论给出的以相关函数参数为指数的项是主导项。而本身在 <math>d<4</math> 时,包含依赖于 <math>d</math> 的指数的主导项,虽然依然存在,但是已经被取代而变成次要项。 | 标度律({{EquationNote|1=8}}),({{EquationNote|1=9}}),({{EquationNote|1=14}})和({{EquationNote|1=15}})没有明显的和空间维数相联系,而({{EquationNote|1=16}})-({{EquationNote|1=18}})则是依赖于 <math>d</math> 的指数关系式,且仅对 <math>d<4\ </math>成立。对于 <math>d=4</math>,热力学函数中依据平均场理论给出的以相关函数参数为指数的项是主导项。而本身在 <math>d<4</math> 时,包含依赖于 <math>d</math> 的指数的主导项,虽然依然存在,但是已经被取代而变成次要项。 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
在理想玻色气体的解析溶解模型中,可以清楚地看到临界点性质从 <math>d<4</math> 到 <math>d=4</math> 再到 <math>d>4</math> 的变化过程。在 <math>d \le 2\ </math> 的情形下,不存在相变或者临界点。当 <math>d>2</math> 时,对于所有 <math>\rho \Lambda ^d | 在理想玻色气体的解析溶解模型中,可以清楚地看到临界点性质从 <math>d<4</math> 到 <math>d=4</math> 再到 <math>d>4</math> 的变化过程。在 <math>d \le 2\ </math> 的情形下,不存在相变或者临界点。当 <math>d>2</math> 时,对于所有 <math>\rho \Lambda ^d | ||
\ge \zeta (d/2)\ </math>,化学势 <math>\mu</math>(此处不要与表面张力指数 <math>\mu</math> 混淆)都会变为零。其中 <math>\rho</math> 是密度,<math>\Lambda</math> 是热德布罗意波长,即 <math>h/\sqrt {2\pi mkT}</math>(其中 <math>h</math> 是普朗克常数,<math>m</math> 是原子质量),<math>\zeta (s)</math> 是黎曼 <math>\zeta</math> 函数。当由下 <math>\rho \Lambda^d \rightarrow | \ge \zeta (d/2)\ </math>,化学势 <math>\mu</math>(此处不要与表面张力指数 <math>\mu</math> 混淆)都会变为零。其中 <math>\rho</math> 是密度,<math>\Lambda</math> 是热德布罗意波长,即 <math>h/\sqrt {2\pi mkT}</math>(其中 <math>h</math> 是普朗克常数,<math>m</math> 是原子质量),<math>\zeta (s)</math> 是黎曼 <math>\zeta</math> 函数。当由下 <math>\rho \Lambda^d \rightarrow | ||
第353行: | 第209行: | ||
\\ \mu \ln(-\mu/kT), & d=4 \\ \\ -\mu , & d>4 . \end{array}\right. </math>|3={{EquationRef|19}}}} | \\ \mu \ln(-\mu/kT), & d=4 \\ \\ -\mu , & d>4 . \end{array}\right. </math>|3={{EquationRef|19}}}} | ||
− | |||
− | |||
当 <math>2<d<4</math> 时,平均场指数 <math>-\mu</math> 依然存在,但是主导指数则是<math>(-\mu)^{d/2-1}\ </math>;当 <math>d>4</math> 时,奇异指数 <math>(-\mu)^{d/2-1}</math> 依然存在,但是主导指数为 <math>-\mu\ </math>。 | 当 <math>2<d<4</math> 时,平均场指数 <math>-\mu</math> 依然存在,但是主导指数则是<math>(-\mu)^{d/2-1}\ </math>;当 <math>d>4</math> 时,奇异指数 <math>(-\mu)^{d/2-1}</math> 依然存在,但是主导指数为 <math>-\mu\ </math>。 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | 这一行为也反映在'''重整化群理论 renormalization-group theory'''中[19-21]。最简单的情形是,重整化群流中有两个相互竞争的不动点,一点与依赖 <math>d</math> 的指数相关,同时满足与 <math>d</math> 无关的标度关系和超标度关系,另一点则与平均场理论的 <math>d</math> 无关指数相关[21]。前者决定了当 <math>d<4\ </math> 时的主导临界点行为。<math>d=4</math> 时,这两个不动点重合,指数现在是平均场理论的指数,但在平均场幂律中增加了对数因子。对于 <math>d>4</math>,两固定点再次分开,此时主导临界点行为源自平均场理论的指数。综上所述,两固定点产生的影响覆盖所有 <math>d\ </math>的取值范围,但是随着 <math>d\ </math>取值的变化,主导临界点行为会在二者之间切换。 | |
− | |||
− | + | ===齐次性的成因与块自旋=== | |
− | |||
− | |||
− | |||
− | + | 来自于重整化群理论的卡丹诺夫块自旋(图2)[5]为({{EquationNote|1=7}})和({{EquationNote|1=10}})中的齐次性以及由它们推导出的指数关系提供了物理解释[19,20]。 | |
− | |||
− | |||
− | |||
− | |||
在格子自旋模型([[伊辛模型 Ising Model|'''伊辛模型''']])中,假设有许多自旋块,每一个的线性尺寸为 <math>L\ </math>,因此包含 <math>L^d</math>,而 <math>L</math> 远小于发散关联长度 <math>\xi</math>(图2)。 | 在格子自旋模型([[伊辛模型 Ising Model|'''伊辛模型''']])中,假设有许多自旋块,每一个的线性尺寸为 <math>L\ </math>,因此包含 <math>L^d</math>,而 <math>L</math> 远小于发散关联长度 <math>\xi</math>(图2)。 | ||
− | [[Image:scaling_laws_widom_nocaption_Fig2.png|thumb|300px|right|Block spins | + | [[Image:scaling_laws_widom_nocaption_Fig2.png|thumb|300px|right|Block spins]] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
每一个自旋块通过与相邻块的共同边界相互作用。在对应的重标度模型中可以将它们视作单独的自旋。每个块的大小都是有限的,因此其内部的自旋只对系统的自由能提供解析项。自由能密度(单位自旋自由能)中包含临界点奇点及其指数的部分源自于自旋块间的相互作用。设自由能密度为<math>f(t,H)\ </math>,它是温度(由 <math>t=T/T_c-1</math>)和磁场强度 <math>H\ </math>的函数。在重标度后的图像中,相关长度与原始图像中相同,但以格子间距的数量来度量,前者比后者小 <math>L\ </math>倍。因此,重标度模型实际上比原始模型离临界点更远。当逼近临界点时,<math>H</math> 和 <math>t</math>趋近于0,重标度模型中的有效 <math>H</math> 和<math>t</math> 为 <math>L^xH</math> 和 <math>L^yt</math>,其中 <math>x</math> 和 <math>y\ ,</math> 是正指数。从原始模型的角度来看,每个块的自旋对自由能奇异部分的贡献是 <math>L^df(t,H)\ </math>,而对重标度模型来说,则是 <math>f(L^yt, L^xH)\ </math>。因此有:{{NumBlk|1=:|2=<math>f(L^yt, | 每一个自旋块通过与相邻块的共同边界相互作用。在对应的重标度模型中可以将它们视作单独的自旋。每个块的大小都是有限的,因此其内部的自旋只对系统的自由能提供解析项。自由能密度(单位自旋自由能)中包含临界点奇点及其指数的部分源自于自旋块间的相互作用。设自由能密度为<math>f(t,H)\ </math>,它是温度(由 <math>t=T/T_c-1</math>)和磁场强度 <math>H\ </math>的函数。在重标度后的图像中,相关长度与原始图像中相同,但以格子间距的数量来度量,前者比后者小 <math>L\ </math>倍。因此,重标度模型实际上比原始模型离临界点更远。当逼近临界点时,<math>H</math> 和 <math>t</math>趋近于0,重标度模型中的有效 <math>H</math> 和<math>t</math> 为 <math>L^xH</math> 和 <math>L^yt</math>,其中 <math>x</math> 和 <math>y\ ,</math> 是正指数。从原始模型的角度来看,每个块的自旋对自由能奇异部分的贡献是 <math>L^df(t,H)\ </math>,而对重标度模型来说,则是 <math>f(L^yt, L^xH)\ </math>。因此有:{{NumBlk|1=:|2=<math>f(L^yt, | ||
L^xH) \equiv L^df(t,H);</math>|3={{EquationRef|20}}}} | L^xH) \equiv L^df(t,H);</math>|3={{EquationRef|20}}}} | ||
− | |||
由({{EquationNote|1=1}})可得,<math>f(t,H)</math> 是 <math>t</math> 和 <math>H^{y/x}</math> 的 <math>d/y\ </math>次齐次函数。 | 由({{EquationNote|1=1}})可得,<math>f(t,H)</math> 是 <math>t</math> 和 <math>H^{y/x}</math> 的 <math>d/y\ </math>次齐次函数。 | ||
− | |||
− | |||
− | |||
− | |||
因此,由({{EquationNote|1=2}})得 | 因此,由({{EquationNote|1=2}})得 | ||
第424行: | 第242行: | ||
2\beta + \gamma =2</math>。 | 2\beta + \gamma =2</math>。 | ||
− | |||
− | |||
− | |||
− | |||
在重标度模型中,<math>t</math> 变为<math>L^yt\ </math>,<math>r</math> 则为 <math>r/L\ </math>。对于关联函数 <math>h(r,t)\ </math>标度律({{EquationNote|1=10}}),也存在某一指数 <math>p\ </math>使 <math>L^p</math> 成为联系原始模型和重标度模型的因子;所以有:{{NumBlk|1=:|2=<math>h(r,t) \equiv | 在重标度模型中,<math>t</math> 变为<math>L^yt\ </math>,<math>r</math> 则为 <math>r/L\ </math>。对于关联函数 <math>h(r,t)\ </math>标度律({{EquationNote|1=10}}),也存在某一指数 <math>p\ </math>使 <math>L^p</math> 成为联系原始模型和重标度模型的因子;所以有:{{NumBlk|1=:|2=<math>h(r,t) \equiv | ||
L^{p}h(r/L,L^yt);</math>|3={{EquationRef|21}}}} | L^{p}h(r/L,L^yt);</math>|3={{EquationRef|21}}}} | ||
− | |||
− | |||
− | |||
即 <math>h(r,t)</math> 是 <math>r</math>和 <math>t^{-1/y}\ </math> 的 <math>p</math> 次齐次函数。再由齐次性表达式({{EquationNote|1=2}})有:{{NumBlk|1=:|2=<math>h(r,t)h(r,t)\equiv r^p G(r/t^{-1/y})</math>|3={{EquationRef|22}}}} | 即 <math>h(r,t)</math> 是 <math>r</math>和 <math>t^{-1/y}\ </math> 的 <math>p</math> 次齐次函数。再由齐次性表达式({{EquationNote|1=2}})有:{{NumBlk|1=:|2=<math>h(r,t)h(r,t)\equiv r^p G(r/t^{-1/y})</math>|3={{EquationRef|22}}}} | ||
− | |||
其中 <math>G\ </math>是标度函数。与({{EquationNote|1=10}})对比,由临界点处的关联长度服从({{EquationNote|1=11}}),我们可得<math>p=-(d-2+\eta)</math> 以及 <math>1/y=\nu\ </math>。由此齐次性表达式 <math>h(r,t)\ </math>得出的标度律<math>(2-\eta)\nu=\gamma\ </math>依然成立,且再由<math>1/y=\nu</math> 和 <math>d/y=2-\alpha</math>,得到超标度律({{EquationNote|1=17}}) — <math>d\nu=2-\alpha\ </math>。 | 其中 <math>G\ </math>是标度函数。与({{EquationNote|1=10}})对比,由临界点处的关联长度服从({{EquationNote|1=11}}),我们可得<math>p=-(d-2+\eta)</math> 以及 <math>1/y=\nu\ </math>。由此齐次性表达式 <math>h(r,t)\ </math>得出的标度律<math>(2-\eta)\nu=\gamma\ </math>依然成立,且再由<math>1/y=\nu</math> 和 <math>d/y=2-\alpha</math>,得到超标度律({{EquationNote|1=17}}) — <math>d\nu=2-\alpha\ </math>。 | ||
− | |||
− | 因此,块自旋图产生了热力学函数和相关函数的临界点标度关系,以及标度指数之间的 <math>d</math> 无关和 <math>d</math> | + | 因此,块自旋图产生了热力学函数和相关函数的临界点标度关系,以及标度指数之间的 <math>d</math> 无关和 <math>d</math> 依赖关系。重正化群理论证实了块自旋图的本质[19,20]。 |
+ | |||
+ | <br> | ||
== References 参考文献 == | == References 参考文献 == |
2022年1月22日 (六) 05:59的版本
引言
规模(scale)是除去时间、空间之外另一个重要的维度。规模缩放(Scaling)的过程中隐藏着世界非线性本质奥秘背后的共性——规模法则。结合伯努瓦·曼德布洛特 Benoit Mandelbrot的《大自然的分形几何》、杰弗里·韦斯特 Geoffery West 的《规模》以及唐纳德·特科特 Donnald Turcotte《分形与混沌——在地质学与地球物理学中的应用》等文献资料,介绍规模法则的相关的内容。
生命或许是宇宙中最复杂、最多样化的现象,它展现出了大大小小、纷繁异常的组织、功能和行为。据估计,地球上有超过800万个不同的生物物种。[1]它们体形不一,最小的细菌质量不足1皮克,而最大的动物——蓝鲸则重100多吨。前往巴西的热带雨林,你可以在一块足球场面积大小的区域内找到100多种树木和分属数千个物种的数百万只昆虫。每个物种的孕育、出生、繁殖和死亡有太多令人惊异的不同。许多细菌仅能存活1小时,只需十万亿分之一瓦特的代谢率便能存活;而鲸类可以存活100年之久,其代谢率达到数百瓦特。[2]我们人类为这个星球所带来的社会生活的复杂性和多样性则在这幅绚丽多彩的生物生命画卷上增添了浓墨重彩的一笔,尤其是那些潜藏在城市外表下的商业、建筑及每位城市居民所表现出来的多样文化和他们背后隐藏的喜怒哀乐,以及所有这些非同寻常的现象。
当我们将以上任何一种复杂的现象与非常简单的行星围绕太阳公转的规律或手表和苹果手机的计时规律相比的时候,自然会思考:在所有这些复杂性和多样性的背后,有没有可能也存在一种类似的潜在规律呢?是否存在一些令人信服的简单法则,确实是从植物、动物等生物体到城市、公司等所有复杂系统都会遵循的?全球各地的森林、草原和城市中正在上演的一幕幕景象是否都是随机的、变化无常的,是一个又一个的偶然事件吗?鉴于产生多样化结果进化过程的随机性,与直觉不同的是,任何规律或系统性行为的出现似乎都不太可能。毕竟,组成生物圈的每个生物体、每个子系统、每个器官、每个细胞、每个基因都是在独特的历史轨迹上,在与众不同的生态环境中,通过自然选择过程进化而来的。现在,让我们来看看图1~图4。每幅图都呈现一个已知变量与其规模大小的关系,这些变量都在人们的生活中扮演着重要的角色。图1是动物代谢率与其体重的关系图。图2是不同动物一生中的心跳次数与其体重的关系图。图3是一座城市所产生的专利数量与该城市人口的关系图。图4是上市公司的净收入和总资产与其雇员人数的关系图。
无须成为一名科学家或以上任何一个领域的专家,你马上就可以发现,尽管它们代表了我们在生命中遇到过的最复杂、最多样化的过程,但每幅图都揭示了一些简单、系统性、规律性的东西。在每一幅图中,所有的数据都奇迹般地差不多排列成一条直线,并没有出现任意分布的现象。而我们此前曾预测,由于每一种动物、每一座城市、每一家公司的历史和所处地理环境不同,可能会出现任意分布的状况。或许最令人吃惊的是图1–2,所有哺乳动物一生中的平均心跳次数大致相当,尽管体形较小的老鼠只能存活几年时间,而大型动物鲸则可以存活100年之久。图1~图4中的例子只是为数众多的缩放关系中的一小部分,动物、植物、生态系统、城市和公司中几乎任何可量化的特点都与规模存在可量化的缩放关系,这些显著规律的存在表明,在所有这些迥异的高度复杂现象中,都存在着共同的概念框架——动物、植物、人类社会行为、城市与公司的活力、增长和组织事实上都遵循类似的一般规律。这种宏观性的框架可以帮助我们解决一系列问题:
• 为何我们最多只能活到120岁,而不是1 000岁或100万岁?为何我们会死亡?是什么限制了人类的寿命?人们能否通过组成自身肌体的细胞和复杂分子计算出自己的寿命?它们能否被改变?寿命是否可以延长?
• 为何身体成分与我们几乎相同的老鼠只能存活两三年时间,而大象却能活到75岁?尽管存在这样的差异,但是为何包括大象、老鼠在内的所有哺乳动物一生中的心跳次数几乎相同,都达到了大约15亿次?
• 从细胞、鲸类到森林,为何生物体和生态系统都以一种普遍、系统性和可预测的方式与规模大小存在比例关系?看上去能够控制它们从生到死的大部分心理和生理历史的神奇数字“4”源自哪里?
• 为何我们会停止生长?为何我们每天必须睡8个小时?为何我们长肿瘤比老鼠少得多,而鲸类几乎不长肿瘤?
• 为何几乎所有公司都只能生存数年时间,而城市却能不断增长,且能够避开即便是最强大、看上去最完美的公司也无法逃避的命运?我们能否预测各家公司的大致生存周期?
• 我们能否发展出一门城市和公司科学,通过一种可量化、可预测的概念性框架了解它们的活力、增长和进化?
• 城市规模大小有限制吗?是否存在最优规模?动物和植物的生长规模有限制吗?是否会出现巨型昆虫或巨型城市?
• 为何生活节奏持续加速?为何创新速度必须持续加速才能维持社会经济生活?
• 我们如何确保人类设计的仅有1万年进化历史的系统能够继续与已经进化了数十亿年的自然生物世界共存?我们能否维持一个受思想和财富创造所驱动、充满生机活力、不断创新的社会?地球是否注定会变成一个充斥着贫民窟、冲突和破坏的星球?
生命的简单性、一致性与复杂性
从最小的细菌到最大的城市和生态系统,生命系统是典型的复杂适应系统,运行在范围广阔的多个空间、时间、能量和质量的尺度上。仅在质量规模上,生命便跨越了30个数量级以上,从为新陈代谢和遗传密码提供能量的分子到生态系统和城市。这一范围的广度大大超过了地球的质量与整个银河系的质量之间的比例,后者仅跨越了18个数量级,相当于一个电子的质量与一只老鼠的质量之间的比例。
在这一庞大的范围内,生命事实上利用相同的基本构成要素和建造过程创造了令人惊叹的各种各样的形式、功能和动力学行为。所有生命的运行都是通过把物理或化学来源的能量转化为有机分子,这些有机分子通过新陈代谢过程构建、维持和繁殖复杂的、高度组织化的系统。这又是通过两个截然不同而又密切相互作用的系统运行实现的:遗传密码系统(储存及处理构建和维持生物体运作的信息与“指令”)和新陈代谢系统(获取、转化、分配能量和物质,用于维持、增长和繁殖)。人们在从分子到生物体的各个层级阐释这两个系统方面已经取得了很大的进展。然而,想要了解信息处理(基因组学)如何与能量和资源处理(新陈代谢)相互融合以维持生命,却依然是一个巨大的挑战。寻找作为这些系统结构、动力和结合的普遍基础原则是理解生命的根本所在,也是在医学、农业、环境学等不同背景中管理生物和社会经济系统的基础。
潜藏在复杂性下的简单性:网络原理与克莱伯定律、自相似性和异速生长律
规模法则在生物学中的机理源头根植于多重网络的通用数学、动力学和组织特性,这些网络将能量、物质和信息分配至细胞、线粒体等渗透进生物体内的细微点。由于生物网络的结构如此多样,并与规模法则的同一性形成鲜明对比,它们的一般属性必须独立于它们各自的进化设计之外。
空间填充
空间填充背后的理念很简单,也很直观。粗略地说,它意味着网络的触角必须延伸至它所服务的整个系统的各个角落,正如图3–7所示。更加具体地说,无论网络的几何学和拓扑结构如何,它都必须服务生物体的所有生物子单元或子系统。我们可以用一个更加熟悉的例子来理解:人体循环系统是一个经典的分级网络,心脏会向始于主动脉的多层次网络输送血液,经过规模不断缩小的血管到达最小的毛细血管,然后再通过网络系统返回至心脏。空间填充就是指毛细血管作为终端单元或网络的末支,必须服务于人体内的每一个细胞,高效地为细胞供给足够的血液和氧气。事实上,这一切只需要毛细血管距离细胞足够近,以使得足够的氧气能够高效地穿透毛细血管壁,并通过细胞的外膜。
终端单元的恒定性
这意味着一个给定网络的终端单元,如我们刚刚讨论过的循环系统中的毛细血管,都有近似相同的尺寸和特点,无论生物体的体形多大。终端单元是网络的重要组成部分,因为它们是能量和资源交换的传输点与分配点。例如植物的叶柄、体内的细胞、细胞内的线粒体。当个体从新生儿成长为成年人时,或者当不同体形大小的新物种进化时,终端单元不会重新改造,也不会重组或重新调节。
终端单元的恒定性可以放在自然选择的节约天性的背景下来了解。毛细血管、线粒体、细胞等是新物种的相应网络的“现成”基石,会相应地进行调节。终端单元的恒定性构成了分类的特性。例如,所有的哺乳动物都有相同的毛细血管。这一类别中的不同物种,如大象、人和老鼠之间的区别就在于网络布局的大小。从这个角度而言,分类之间的差别,即哺乳动物、植物和鱼等之间的差别,是由它们自身不同网络的终端单元的不同特性决定的。尽管所有的哺乳动物都有相似的毛细血管和线粒体,鱼类也同样如此,但哺乳动物的毛细血管和线粒体与鱼的毛细血管和线粒体存在大小及整体特点的不同。
优化
最后一个假设认为,在自然选择过程中隐含的连续的多重反馈和调整机制在过去长期发挥作用,使得网络性能得到了“优化”。举例来说,包括我们人类在内,任何哺乳动物的心脏用来通过循环系统输送血液的平均能量值都最小化,即它是在既定的设计和不同的网络限制条件下能够得到的最小可能。换句话说,在循环系统的架构和动力学的无限种可能中,那些能够进化并最终为所有哺乳动物所共有的充满恒定终端单元的空间是能够将心脏输出最小化的。网络不断进化的结果是维持个体生命、完成生命日常生活任务的能量被最小化,以使得留给性生活、繁殖、抚育后代的能量最大化。这被称作达尔文适应度 Darwinian Fitness,是普通个体为下一代基因库所做的基因贡献。
优化原则位于自然界所有基本法则的核心,无论是牛顿定律、麦克斯韦的电磁学理论、量子力学、爱因斯坦的相对论,还是基本粒子的大一统理论。它们的现代构成都是一个数学框架,其中一个被称作“作用量”的数值被最小化,这个数值与能量存在松散关系。所有的物理学定律都源自“最小作用量原理”,该原理认为,在一个系统能够拥有或遵循的所有可能配置中,最终得以实现的是作用量最小的那个配置。因此,宇宙自大爆炸以来的动力学、架构和时间演化,来自黑洞及传输手机信息所用的卫星和信息本身,所有的电子、光子、希格斯粒子,以及物理学中的一切,都是由这个优化原则决定的。
哺乳动物、植物的代谢率和循环系统
ATP是使得我们存活下去的代谢能量的“基本货币”。氧气对维持ATP分子的持续供给而言十分重要,这是我们必须持续呼吸的原因。吸入的氧气被输送到我们布满毛细血管的肺部的表面膜上,并被我们的血液吸收,继而通过心血管系统输送到我们的细胞中。氧分子和血液细胞中充当氧气载体的富含铁元素的血红蛋白结合在一起。这个氧化过程使我们的血液呈红色,正如铁在空气中氧化成铁锈一样。在血液将氧气输送到细胞中后,红色就变成了浅蓝色,这是静脉呈蓝色的原因。
因此,氧气输送到细胞的速度及血液通过循环系统传输的速度也就成了我们代谢率的指标。同样地,氧气吸入我们口中的速度及其进入呼吸系统的速度也是代谢率的指标。这两个系统紧密相连,血流速度、呼吸速度和代谢率都彼此互成比例,存在简单的线性关系。因此,无论哺乳动物的体形有多大,每呼吸一次,均心跳四次。氧气运输系统的紧密相连就是心血管网络与呼吸网络的特点在决定和约束代谢率中起重要作用的原因。
利用能量将血液输送到循环系统的脉管系统内的速度被称作心脏输出功率。所消耗的这一能量被用于克服血液流经不断变窄的血管时产生的黏滞力或摩擦力。在整个旅程中,血液首先从主动脉出发,这是距离心脏最近的动脉,其次流经多重网络,最后到达为细胞供给养分的毛细血管。人类的主动脉类似一个圆柱形的管道,长约18英寸(约45厘米),直径约为1英寸(约2.5厘米),而我们的毛细血管只有5微米(约0.01英寸)粗,比一根头发丝还要细。[13]尽管一头蓝鲸的主动脉的直径几乎达到1英尺(30厘米),但它的毛细血管的粗细和你我的相同。这就是这些网络的终端单元恒定性的例子。
假设是,网络结构已经进化到可以使心脏输出最小化,即输送血液至系统所需的能量最小化。对像我们的心脏这样的由脉动驱动流动的任意网络而言,除了血液流经毛细血管和小血管时的黏滞力外,还有另一个潜在的能量损失来源。这是来自其脉动性质的微妙影响,恰好表明了我们因优化性能而产生的心血管系统设计的美妙之处。
当血液离开心脏时,它会通过由心脏跳动引发的波动沿着主动脉流动。这一波动的频率与心率一致,大约为每分钟60次。主动脉又分为两个动脉,当血液抵达第一个分支点时,一些血液流向其中一个通道,另一些血液则流向另一个通道,都是以波动的形式流动的。波动的特点是,当遭遇障碍时会产生反射,镜子是最明显的例子。光线是一种电磁波,因此,你所看到的图像只是镜子表面对源自你身体的光波的反射。其他常见的例子还包括水波在遇到障碍时的反射或者声波遭遇硬表面时反射的回声。
相类似的是,在主动脉中传输的血液波在遭遇到分支点时会部分反射,剩余的血液会继续传输至子动脉。这些反射可能会带来很糟糕的后果,因为它们意味着你的心脏其实是在对自己泵血。此外,随着血液沿着不同层级的血管流动,在网络的每一个分支点都会产生相同的现象,上述效应会大大增强,你的心脏需要支出大量能量来克服这些多重反射。这是一个极端低效的设计,为心脏带来了巨大的负担,也浪费了很多能量。
为了避免这一潜在的问题,并尽量减少我们心脏必须承担的工作,我们的循环系统的几何结构不断进化,使得网络中的任何分支点都不存在反射现象。有关这一点如何实现的数学原理和物理学原理有些复杂,但结果是简单明了的:该理论预测认为,如果从分支点出发的子血管的横截面面积总和与抵达分支点的母血管的横截面面积总和相等,那么在任何分支点都不会出现反射。
所谓的等面积分支其实就是我们的循环系统构建的方式,这已经由对许多哺乳动物、植物的详细测量数据证实。植物虽然没有心跳,通过维管系统的流动是稳定的、非搏动性的,但它们的维管就像搏动性的循环系统一样按比例变化,这乍看上去有些令人吃惊。然而,如果你把树木看作一捆紧紧捆绑在一起的纤维,从树干开始,继而延伸至它的枝杈,整个分级结构的横截面面积就必须保持一致。图3–8展示了这一纤维束结构与哺乳动物的管道结构的比较。等面积分支的有趣结果便是,树干的横截面面积与网络末端(叶柄)所有小枝杈的横截面面积总和相当。令人吃惊的是,达·芬奇知道这一点。我复制了他的笔记本中重要的一页,他在这一页中呈现了这个事实,如图3–9所示。
尽管这个简单的几何图形显示出了树木遵循等面积分支的原因,但它还是过于简单了。然而,利用此前提及的空间填充和优化网络通用原则,再加上生物力学的限制要求枝杈有足够的韧性以抵御风的扰动,使其能够弯曲不受到损害,可以通过更加现实的树木模型推导出等面积分支法则。这一分析表明,植物同哺乳动物一样按比例变化,无论在个体内部还是在不同的物种之间,包括代谢率的3/4幂律,即使它们的物理结构完全不同。[14]
城市和公司是大型的生物体吗?
我们所提出的网络理论可以为理解规模法则以及定量解决生物学中一系列不同问题提供总体概念框架,但它也会很自然地带来下面这样的问题:这一框架是否可以延伸并用于理解其他网络系统,如城市和公司。从表面上看,它们与生命体和生态系统存在许多共同点:毕竟,它们也会代谢能量和资源,产生废弃物,处理信息,生长、适应并进化,感染疾病,甚至会发展出肿瘤并不断扩大。此外,它们也变老,几乎所有公司最终都会消亡,但对于城市而言,只有极少数会消亡。
类似于生物网络的三条上述假设,城市中的许多基础设施网络也是空间填充的,例如,天然气、水和电等公用事业网络的终端单元或终点都必须为构成城市的所有不同建筑物提供供给。连接你的房屋与城市水路和电路的管道就像毛细血管,可以把你的房屋想象成细胞。与此相似的是,公司的所有雇员都可以被看作终端单元,他们必须通过连接首席执行官与管理层的多重网络获得资源(如工资)和信息的供给。
服务并支持城市建筑物的网络终端单元,如电源插座或水龙头,同样是近似恒定的。例如,你家中的电源插座和世界上任何地方的任何建筑物中的电源插座都是相同的,无论建筑物是大是小。或许在细节设计上存在差异,但它们的尺寸都是相同的。即使是纽约市的帝国大厦和迪拜、上海或圣保罗等地比你家房屋高50多倍的建筑物,其内的电源插座和水龙头与你家的也都是十分相似的。如果电源插座随着建筑物的高度而等体积地成比例变化,那么,帝国大厦中的电源插座将会是你家中电源插座的50多倍大,它将会有超过10英尺高、3英尺宽,而非几英寸。正如在生物学中一样,基本的终端单元,如电源插座和水龙头不会因我们设计新建筑物而每次都进行改造,无论这些建筑物地处何方,体积多大。
这很自然地引出以下问题:城市与公司的动力学和架构是否也是类似的优化原则的结果?在它们的多重网络系统中,得到优化的是什么?城市的组织是为了使社会互动最大化吗?通过移动时间最小化来优化交通吗?它们是否最终受到每个公民、每家公司都要将自己的资产、利益和财富最大化的野心驱动?
物理学中的标度律
标度律 Scaling laws是物理原理在齐次函数数学语言中的表达。
如果对所有 [math]\displaystyle{ \lambda\ }[/math] 都满足关系
-
[math]\displaystyle{ f(\lambda x, \lambda y, \lambda z, \ldots) \equiv \lambda^{n}f (x, y, z, \ldots). }[/math]
(1)
则称函数 [math]\displaystyle{ f (x, y, z,\ldots) }[/math] 是变量 [math]\displaystyle{ x,y,z,\ldots }[/math] 的 [math]\displaystyle{ n }[/math] 次齐次函数。
例如,[math]\displaystyle{ ax^2 + bxy + cy^2 }[/math] 是 [math]\displaystyle{ x }[/math] 和 [math]\displaystyle{ y }[/math] 二次齐次函数,而对 [math]\displaystyle{ a, b, }[/math] [math]\displaystyle{ c\ }[/math]则是一次齐次的。
将 [math]\displaystyle{ \lambda = 1/x }[/math] 带入(1),则有齐次性的另一种表达式:如果[math]\displaystyle{ f (x, y, z, \ldots) }[/math]满足关系:
-
[math]\displaystyle{ f(x, y, z, \ldots) = x^nf(1, y/x, z/x, \ldots) \equiv x^n\phi(y/x, z/x, \ldots); }[/math]
(2)
则它是 [math]\displaystyle{ x, y, z, \ldots }[/math] 的 [math]\displaystyle{ n }[/math] 次齐次函数。
即等于 [math]\displaystyle{ x }[/math] 的 [math]\displaystyle{ n }[/math] 次方乘以某个以比值 [math]\displaystyle{ y/x, z/x, \ldots }[/math] 为变量的函数 [math]\displaystyle{ \phi }[/math]。
如果[math]\displaystyle{ f (x, y, z, \ldots) }[/math] 对 [math]\displaystyle{ x, y, z, \ldots }[/math] 是 [math]\displaystyle{ n }[/math] 次齐次的,则它满足欧拉定理:
-
[math]\displaystyle{ x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}+z\frac{\partial f}{\partial z}+\cdots \equiv nf. }[/math]
(3)
在热力学 Thermodynamics中,如果一个系统的标度增加 [math]\displaystyle{ \lambda }[/math] 倍而其强度量不发生变化,仅是该系统所有化学组分的广度量(如熵 [math]\displaystyle{ S\ }[/math],能量 [math]\displaystyle{ E\ }[/math],体积 [math]\displaystyle{ V\ }[/math]和质量 [math]\displaystyle{ m_1, m_2, \ldots }[/math] 等)也增加相同倍数。则有广度函数 [math]\displaystyle{ S(E, V, m_1, m_2, \ldots) }[/math] 在广义论证中满足齐次关系:
-
[math]\displaystyle{ S(\lambda E, \lambda V, \lambda {m_1}, \lambda {m_2}, \ldots ) = \lambda S(E, V, {m_1}, {m_2}, \ldots). }[/math]
(4)
以 [math]\displaystyle{ T }[/math],[math]\displaystyle{ p }[/math],[math]\displaystyle{ \mu_i }[/math] 分别表示温度,压力和不同组分 [math]\displaystyle{ i\ }[/math]的化学势,根据热力学关系 [math]\displaystyle{ \partial S/\partial E = 1/T\ }[/math], [math]\displaystyle{ \partial S/\partial V = p/T\ }[/math],和 [math]\displaystyle{ \partial S/\partial m_i = - \mu_i/T\ }[/math]:再由欧拉定理可得:
-
[math]\displaystyle{ \frac{1}{T} (E + pV - \mu_1m_1 - \mu_2m_2 - \cdots) =S, }[/math]
(5)
任何广度函数 [math]\displaystyle{ X(T, p, m_1, m_2, \ldots)\ }[/math](如体积 [math]\displaystyle{ V\ }[/math]或者吉布斯自由能[math]\displaystyle{ E+pV-TS\ }[/math])在等温等压状态下,对 [math]\displaystyle{ m_i }[/math] 都是一次齐次的,因此:
-
[math]\displaystyle{ X = m_1 \frac{\partial X}{\partial m_1} + m_2 \frac{\partial X}{\partial m_2} + \cdots , }[/math]
(6)
是重要的一类关系。
引言交代了经典热力学语境下的标度关系。在其后发展出的统计力学中,“标度律”一词指代热力学函数和相关函数在临界点附近的齐次形式,以及这些函数中指数之间的关系。
当 [math]\displaystyle{ t = T/T_c-1\ }[/math]时,铁磁物质临近居里点(临界点),磁场强度 [math]\displaystyle{ H\ }[/math],磁化强度 [math]\displaystyle{ M\ }[/math]以及 [math]\displaystyle{ t = T/T_c-1\ }[/math]满足
-
[math]\displaystyle{ H = M\mid M\mid ^{\delta-1} j(t/\mid M\mid ^{1/\beta}) }[/math]
(7)
其中 [math]\displaystyle{ j(x) }[/math] 是“标度”函数,[math]\displaystyle{ \beta }[/math] 和[math]\displaystyle{ \delta }[/math] 是临界点指数。因此由(2)和(7),当铁磁物质趋近于临界点时[math]\displaystyle{ (H\rightarrow 0 }[/math] 且 [math]\displaystyle{ t\rightarrow 0)\ }[/math],[math]\displaystyle{ \mid H\mid }[/math] 是 [math]\displaystyle{ t }[/math] 和 [math]\displaystyle{ \mid M\mid
^{1/\beta} }[/math] 的 [math]\displaystyle{ \beta \delta\ }[/math] 次齐次函数。当 [math]\displaystyle{ x }[/math] 趋近于[math]\displaystyle{ -b\ }[/math](正常数)时,标度函数 [math]\displaystyle{ j(x) }[/math] 趋近于零;当 [math]\displaystyle{ x\rightarrow \infty\ }[/math]时,它依 [math]\displaystyle{ x^{\beta(\delta-1)} }[/math] 成比例发散(如图一),且 [math]\displaystyle{ j(0) = c\ }[/math](正常数)。尽管(7)局限在临界点[math]\displaystyle{ (t, M, H }[/math] 都接近零)附近的极小范围内,但标度变量 [math]\displaystyle{ x = t/\mid M\mid ^{1/\beta} }[/math]却遍历[math]\displaystyle{ -b \lt x \lt \infty\ }[/math]的无穷范围。
当[math]\displaystyle{ \mid H\mid = 0+ }[/math] 且 [math]\displaystyle{ t\lt 0\ }[/math],[math]\displaystyle{ M }[/math] 是自发磁化率,由(7)可得[math]\displaystyle{ \mid M\mid = (-\frac{t}{b})^\beta\ }[/math],其中 [math]\displaystyle{ \beta }[/math] 为临界指数。在临界等温线[math]\displaystyle{ (t=0)\ }[/math],当 [math]\displaystyle{ M\rightarrow 0 }[/math] 时,我们有[math]\displaystyle{ H \sim cM\mid M\mid ^{\delta-1}\ }[/math],其中 [math]\displaystyle{ \delta }[/math] 为此时的临界指数。由前文中 [math]\displaystyle{ j(x) }[/math] 的第一个性质和(7)式,我们可以计算磁化率 [math]\displaystyle{ (\partial M/\partial H)_T\ }[/math],它在[math]\displaystyle{ \mid H\mid = 0+ }[/math] 且 [math]\displaystyle{ t\lt 0 }[/math],以及在 [math]\displaystyle{ H=0 }[/math]且[math]\displaystyle{ t\gt 0 }[/math] 时依 [math]\displaystyle{ \mid t\mid ^{-\beta(\delta-1)}\ }[/math]成比例发散(尽管系数不同)。磁化率指数的常用符号是 [math]\displaystyle{ \gamma\ }[/math],因此有
-
[math]\displaystyle{ \gamma = \beta(\delta-1). }[/math]
(8)
方程(7)和(8)都是标度律的范例,(7)是齐次性的表述,(8)作为指数关系式则是这种齐次性的结果。
由于[math]\displaystyle{ M = -(\partial F/\partial H)_T\ }[/math],等温条件下自由能 [math]\displaystyle{ F }[/math] 可以通过积分由(7)式得出,且相应的热容 [math]\displaystyle{ C_H = -(\partial ^2 F/\partial T^2)_H\ }[/math]。由(7)式可知,在[math]\displaystyle{ H=0 }[/math] 时 [math]\displaystyle{ C_H }[/math] 在临界点处依 [math]\displaystyle{ \mid t\mid ^{-\alpha} }[/math] 比例发散(其中 [math]\displaystyle{ t\rightarrow 0- }[/math] 和 [math]\displaystyle{ t\rightarrow 0+ }[/math] 各有不同的系数),临界点指数 [math]\displaystyle{ \alpha }[/math] 与[math]\displaystyle{ \beta }[/math] 和 [math]\displaystyle{ \gamma }[/math] 满足以下标度律[9]:
-
[math]\displaystyle{ \alpha +2\beta +\gamma=2. }[/math]
(9)
当 [math]\displaystyle{ 2\beta+\gamma=2 }[/math],则有 [math]\displaystyle{ \alpha =0 }[/math],这通常意味着对数发散而不是幂律发散,并且在 [math]\displaystyle{ t=0+ }[/math] 和 [math]\displaystyle{ t=0- }[/math] 之间存在叠加有限不连续。[4]在二维伊辛模型中,仅有对数关系而这种不连续是不存在的;而在平均场近似中情形相反。
临界指数 Critical exponents
(8)和(9)分别来自Rice [10]和Scott [11]的贡献。它们大概是历史上最早版本的临界指数关系。在此之后,Domb和Sykes[12]以及Fisher[13]注意到指数 [math]\displaystyle{ \gamma }[/math] 实际上比平均场值[math]\displaystyle{ \gamma =1 }[/math] 大。而在更早之前,Guggenheim的对应状态分析就清楚地表明 [math]\displaystyle{ \beta }[/math]值更靠近1/3而非平均场值的1/2。之后在 [math]\displaystyle{ \gamma =1 }[/math] 和 [math]\displaystyle{ \beta \simeq 1/3\ }[/math]的假设下,里斯由(8)式总结出 [math]\displaystyle{ \delta = 1+1/\beta \simeq 4 }[/math](如今已知正确值接近5)。同时斯考特由(9)式得出 [math]\displaystyle{ \alpha =1-2\beta \simeq 1/3 }[/math](正确值接近1/10)。另外平均场值 [math]\displaystyle{ \delta =3 }[/math],[math]\displaystyle{ \alpha =0\ }[/math]。
- [math]\displaystyle{ \label{eq:10} h(r,t)=r^{-(d-2+\eta)}G(r/\xi). }[/math]
铁磁体和流体中的长程空间相关函数在临界点附近也表现出齐次性。简单起见,考虑磁场强度 [math]\displaystyle{ H=0 }[/math] 且温度接近临界点的情况,关联函数 [math]\displaystyle{ h(r,t) }[/math] 作为空间分离 [math]\displaystyle{ r }[/math](假设很大)的函数,如下所示:
-
[math]\displaystyle{ h(r,t)=r^{-(d-2+\eta)}G(r/\xi). }[/math]
(10)
其中 [math]\displaystyle{ d }[/math] 是空间维度,[math]\displaystyle{ \eta }[/math] 是另一临界点指数,[math]\displaystyle{ \xi }[/math] 是关联长度(相关关系的指数衰减长度),当趋近于临界点时,其发散过程满足:
-
[math]\displaystyle{ \xi\sim \mid t\mid ^{-\nu} }[/math]
(11)
其中 [math]\displaystyle{ \nu }[/math] 是另外的临界指数。因此 [math]\displaystyle{ h(r,t) }[/math]([math]\displaystyle{ H=0 }[/math])是 [math]\displaystyle{ r }[/math] 和 [math]\displaystyle{ \mid t\mid ^{-\nu} }[/math] 的[math]\displaystyle{ -(d-2+\eta)\ }[/math]次齐次方程。标度函数 [math]\displaystyle{ G(x) }[/math] 具有以下性质(在常数比例因子范围内):
-
[math]\displaystyle{ G(x) \sim \left\{ \begin{array} {lc }x^{\frac{1}{2}(d-3)+\eta} e^{-x}, & x\rightarrow \infty \\ 1, & x\rightarrow 0 . \end{array} \right. }[/math]
(12)
因此,在任何靠近临界点的恒温热力学状态下,当 [math]\displaystyle{ r\rightarrow \infty }[/math] 时,[math]\displaystyle{ h }[/math] 随[math]\displaystyle{ r }[/math] 的增加依 [math]\displaystyle{ r^{-\frac{1}{2}(d-1)}e^{-r/\xi}\ }[/math] 成比例衰减(参见奥恩斯泰因-泽尔尼克理论 Ornstein-Zernike theory)。如果相反,在固定的大 [math]\displaystyle{ r\ }[/math] 条件下,迫近临界点([math]\displaystyle{ \xi \rightarrow \infty }[/math]),会有 [math]\displaystyle{ h(r) }[/math] 作为逆幂 [math]\displaystyle{ r^{-(d-2+\eta)}\ }[/math] 随 [math]\displaystyle{ r }[/math] 衰减,这也修正了在此极限条件下奥恩斯泰因-泽尔尼克理论中出现的 [math]\displaystyle{ r^{-(d-2)} }[/math]。标度律(10)及标度函数 [math]\displaystyle{ G(x) }[/math] 内插于这些极限之间。
在流体研究中,由数密度 [math]\displaystyle{ \rho }[/math] 和 等温压缩率 [math]\displaystyle{ \chi }[/math],我们可以得到一个奥恩斯泰因-泽尔尼克理论的精确表达式:
-
[math]\displaystyle{ \rho kT \chi =1+\rho \int h(r) \rm{d}\tau }[/math]
(13)
其中 [math]\displaystyle{ k }[/math] 是玻尔兹曼常数,[math]\displaystyle{ \rm{d} \tau }[/math] 是体积元,积分区域是整个空间。对铁磁体也有相同的关系成立,包含磁化率 [math]\displaystyle{ \chi }[/math],[math]\displaystyle{ \rho }[/math] 与临界密度 [math]\displaystyle{ \rho_c }[/math] 的差值,以及磁化强度 [math]\displaystyle{ M\ }[/math]。在临界点处,[math]\displaystyle{ \chi }[/math] 无穷大,且对应积分式也发散,因为衰减长度 [math]\displaystyle{ \xi }[/math] 也是无穷大的。而密度 [math]\displaystyle{ \rho }[/math]为有限正常数 [math]\displaystyle{ \rho_c }[/math],[math]\displaystyle{ T }[/math] 为 [math]\displaystyle{ T_c\ }[/math]。
-
[math]\displaystyle{ (2-\eta)\nu = \gamma . }[/math]
(14)
The surface tension [math]\displaystyle{ \sigma }[/math] in liquid-vapor equilibrium, or the analogous excess free energy per unit area of the interface between coexisting, oppositely magnetized domains, vanishes at the critical point (Curie point) proportionally to [math]\displaystyle{ (-t)^\mu }[/math] with [math]\displaystyle{ \mu }[/math] another critical-point exponent. The interfacial region has a thickness of the order of the correlation length [math]\displaystyle{ \xi }[/math] so [math]\displaystyle{ \sigma/\xi }[/math] is the free energy per unit volume associated with the interfacial region. That is in its magnitude and in its singular critical-point behavior the same free energy per unit volume as in the bulk phases, from which the heat capacity follows by two differentiations with respect to the temperature. Thus, [math]\displaystyle{ \sigma/\xi }[/math] vanishes proportionally to [math]\displaystyle{ (-t)^{2-\alpha}\ ; }[/math] so, together with (9),
- [math]\displaystyle{ \label{eq:15} \mu + \nu = 2-\alpha= \gamma +2\beta, }[/math]
液-气平衡时的表面张力 [math]\displaystyle{ \sigma }[/math],或共存的、相反磁化畴之间的界面单位面积上的类似过剩自由能,在临界点(居里点)与 [math]\displaystyle{ (-t)^\mu }[/math]([math]\displaystyle{ \mu }[/math]对应此处临界点指数)成比例消失。界面区域的厚度与关联长度 [math]\displaystyle{ \xi }[/math] 的数量级相当,因此 [math]\displaystyle{ \sigma/\xi }[/math] 是与界面区域相关的单位体积自由能。在它的大小和它的奇异临界点行为中,每单位体积的自由能和在体相中是一样的,从体相中,依据关于温度的两个微分可以得出热容。因此,[math]\displaystyle{ \sigma/\xi }[/math] 依 [math]\displaystyle{ (-t)^{2-\alpha}\ }[/math] 成比例消失;再联系(9)式可以得到另一个标度关系[15]:
-
[math]\displaystyle{ \mu + \nu = 2-\alpha= \gamma +2\beta, }[/math]
(15)
其他标度关系 [16,17].
临界点指数与空间维度
临界点指数取决于维数 [math]\displaystyle{ d\ }[/math]。人们发现,将 [math]\displaystyle{ d }[/math] 视为具有任意大小的连续变量可以解释说明这一观点。在一类被称为超标度的临界点指数关系中,可以清楚地看到 [math]\displaystyle{ d }[/math]。关联长度 [math]\displaystyle{ \xi }[/math] 为密度或磁化波动的相干长度。决定其大小的是体积 [math]\displaystyle{ \xi ^d }[/math] 中与自发波动有关的过剩自由能,且一定是 [math]\displaystyle{ kT\ }[/math] 阶的,在临界点处具有有限值 [math]\displaystyle{ kT_c }[/math] 。但在这样的微元体中,典型的波动只会产生共轭相。则自由能 [math]\displaystyle{ kT }[/math] 为创建区域 [math]\displaystyle{ \xi^{d-1}\ }[/math]的界面 [math]\displaystyle{ \sigma \xi^{d-1}\ }[/math]的自由能。因此,当接近临界点时,[math]\displaystyle{ \sigma \xi^{d-1} }[/math] 具有 [math]\displaystyle{ kT_c\ }[/math] 阶的有限极限。再由指数 [math]\displaystyle{ \mu }[/math] 和 [math]\displaystyle{ \nu\ }[/math]的定义可得超标度关系:
-
[math]\displaystyle{ \mu = (d-1)\nu, }[/math]
(16)
再由(15)有[16]:
-
[math]\displaystyle{ d\nu = 2-\alpha = \gamma+2\beta, }[/math]
(17)
-
[math]\displaystyle{ 2-\eta = \frac{\delta -1}{\delta +1} d. }[/math]
(18)
标度律(8),(9),(14)和(15)没有明显的和空间维数相联系,而(16)-(18)则是依赖于 [math]\displaystyle{ d }[/math] 的指数关系式,且仅对 [math]\displaystyle{ d\lt 4\ }[/math]成立。对于 [math]\displaystyle{ d=4 }[/math],热力学函数中依据平均场理论给出的以相关函数参数为指数的项是主导项。而本身在 [math]\displaystyle{ d\lt 4 }[/math] 时,包含依赖于 [math]\displaystyle{ d }[/math] 的指数的主导项,虽然依然存在,但是已经被取代而变成次要项。
在理想玻色气体的解析溶解模型中,可以清楚地看到临界点性质从 [math]\displaystyle{ d\lt 4 }[/math] 到 [math]\displaystyle{ d=4 }[/math] 再到 [math]\displaystyle{ d\gt 4 }[/math] 的变化过程。在 [math]\displaystyle{ d \le 2\ }[/math] 的情形下,不存在相变或者临界点。当 [math]\displaystyle{ d\gt 2 }[/math] 时,对于所有 [math]\displaystyle{ \rho \Lambda ^d \ge \zeta (d/2)\ }[/math],化学势 [math]\displaystyle{ \mu }[/math](此处不要与表面张力指数 [math]\displaystyle{ \mu }[/math] 混淆)都会变为零。其中 [math]\displaystyle{ \rho }[/math] 是密度,[math]\displaystyle{ \Lambda }[/math] 是热德布罗意波长,即 [math]\displaystyle{ h/\sqrt {2\pi mkT} }[/math](其中 [math]\displaystyle{ h }[/math] 是普朗克常数,[math]\displaystyle{ m }[/math] 是原子质量),[math]\displaystyle{ \zeta (s) }[/math] 是黎曼 [math]\displaystyle{ \zeta }[/math] 函数。当由下 [math]\displaystyle{ \rho \Lambda^d \rightarrow \zeta(d/2) }[/math] 时,[math]\displaystyle{ \mu }[/math] 从负值范围变为零。当 [math]\displaystyle{ \mu \rightarrow 0- }[/math] 时,[math]\displaystyle{ \zeta(d/2)-\rho \Lambda^d }[/math] 之差(在正比例因子内)变为零,且满足以下关系:
-
[math]\displaystyle{ \zeta(d/2)-\rho \Lambda^d \sim \left\{ \begin{array} {lc }(-\mu)^{d/2-1}, & 2\lt d\lt 4 \\ \\ \mu \ln(-\mu/kT), & d=4 \\ \\ -\mu , & d\gt 4 . \end{array}\right. }[/math]
(19)
当 [math]\displaystyle{ 2\lt d\lt 4 }[/math] 时,平均场指数 [math]\displaystyle{ -\mu }[/math] 依然存在,但是主导指数则是[math]\displaystyle{ (-\mu)^{d/2-1}\ }[/math];当 [math]\displaystyle{ d\gt 4 }[/math] 时,奇异指数 [math]\displaystyle{ (-\mu)^{d/2-1} }[/math] 依然存在,但是主导指数为 [math]\displaystyle{ -\mu\ }[/math]。
这一行为也反映在重整化群理论 renormalization-group theory中[19-21]。最简单的情形是,重整化群流中有两个相互竞争的不动点,一点与依赖 [math]\displaystyle{ d }[/math] 的指数相关,同时满足与 [math]\displaystyle{ d }[/math] 无关的标度关系和超标度关系,另一点则与平均场理论的 [math]\displaystyle{ d }[/math] 无关指数相关[21]。前者决定了当 [math]\displaystyle{ d\lt 4\ }[/math] 时的主导临界点行为。[math]\displaystyle{ d=4 }[/math] 时,这两个不动点重合,指数现在是平均场理论的指数,但在平均场幂律中增加了对数因子。对于 [math]\displaystyle{ d\gt 4 }[/math],两固定点再次分开,此时主导临界点行为源自平均场理论的指数。综上所述,两固定点产生的影响覆盖所有 [math]\displaystyle{ d\ }[/math]的取值范围,但是随着 [math]\displaystyle{ d\ }[/math]取值的变化,主导临界点行为会在二者之间切换。
齐次性的成因与块自旋
来自于重整化群理论的卡丹诺夫块自旋(图2)[5]为(7)和(10)中的齐次性以及由它们推导出的指数关系提供了物理解释[19,20]。
在格子自旋模型(伊辛模型)中,假设有许多自旋块,每一个的线性尺寸为 [math]\displaystyle{ L\ }[/math],因此包含 [math]\displaystyle{ L^d }[/math],而 [math]\displaystyle{ L }[/math] 远小于发散关联长度 [math]\displaystyle{ \xi }[/math](图2)。
每一个自旋块通过与相邻块的共同边界相互作用。在对应的重标度模型中可以将它们视作单独的自旋。每个块的大小都是有限的,因此其内部的自旋只对系统的自由能提供解析项。自由能密度(单位自旋自由能)中包含临界点奇点及其指数的部分源自于自旋块间的相互作用。设自由能密度为[math]\displaystyle{ f(t,H)\ }[/math],它是温度(由 [math]\displaystyle{ t=T/T_c-1 }[/math])和磁场强度 [math]\displaystyle{ H\ }[/math]的函数。在重标度后的图像中,相关长度与原始图像中相同,但以格子间距的数量来度量,前者比后者小 [math]\displaystyle{ L\ }[/math]倍。因此,重标度模型实际上比原始模型离临界点更远。当逼近临界点时,[math]\displaystyle{ H }[/math] 和 [math]\displaystyle{ t }[/math]趋近于0,重标度模型中的有效 [math]\displaystyle{ H }[/math] 和[math]\displaystyle{ t }[/math] 为 [math]\displaystyle{ L^xH }[/math] 和 [math]\displaystyle{ L^yt }[/math],其中 [math]\displaystyle{ x }[/math] 和 [math]\displaystyle{ y\ , }[/math] 是正指数。从原始模型的角度来看,每个块的自旋对自由能奇异部分的贡献是 [math]\displaystyle{ L^df(t,H)\ }[/math],而对重标度模型来说,则是 [math]\displaystyle{ f(L^yt, L^xH)\ }[/math]。因此有:
-
[math]\displaystyle{ f(L^yt, L^xH) \equiv L^df(t,H); }[/math]
(20)
由(1)可得,[math]\displaystyle{ f(t,H) }[/math] 是 [math]\displaystyle{ t }[/math] 和 [math]\displaystyle{ H^{y/x} }[/math] 的 [math]\displaystyle{ d/y\ }[/math]次齐次函数。
因此,由(2)得
[math]\displaystyle{ f(t,H)=t^{d/y} \phi(H^{y/x}/t)=H^{d/x}\psi(t/H^{y/x}) }[/math],
其中 [math]\displaystyle{ \phi }[/math] 和 [math]\displaystyle{ \psi }[/math] 仅仅是 [math]\displaystyle{ H^{y/x}/t\ }[/math] 的函数。当 [math]\displaystyle{ H=0 }[/math],由第一个关系式可得 [math]\displaystyle{ f(t,0)=\phi(0)t^{d/y}\ }[/math]。但是 [math]\displaystyle{ f(t,0) }[/math] 的两个温度导数对单位自旋热容有贡献,且以 [math]\displaystyle{ t^{-\alpha}\ }[/math]发散,所以有[math]\displaystyle{ d/y=2-\alpha\ }[/math]。另外,在临界等温线[math]\displaystyle{ (t=0)\ }[/math]上,由第二个关系式可得[math]\displaystyle{ f(0,H)=\psi(0)H^{d/x}\ }[/math]。但单位自旋磁化强度[math]\displaystyle{ -(\partial f/\partial H)_T\ }[/math]随 [math]\displaystyle{ H^{d/x-1}\ }[/math]衰减,因此 [math]\displaystyle{ d/x-1=1/\delta\ }[/math]。指数 [math]\displaystyle{ d/x }[/math] 与 [math]\displaystyle{ d/y }[/math] 可以由热容指数 [math]\displaystyle{ \alpha }[/math] 和临界等温线指数 [math]\displaystyle{ \delta\ }[/math]定义。同时再有单位自旋磁化强度[math]\displaystyle{ -(\partial f/\partial H)_T }[/math],(20)中[math]\displaystyle{ f(t,H) }[/math] 的齐次形式与(7)式 [math]\displaystyle{ H(t,M) }[/math] 的齐次形式等价,由此得到标度律 [math]\displaystyle{ \gamma=\beta(\delta-1) }[/math] 和[math]\displaystyle{ \alpha + 2\beta + \gamma =2 }[/math]。
在重标度模型中,[math]\displaystyle{ t }[/math] 变为[math]\displaystyle{ L^yt\ }[/math],[math]\displaystyle{ r }[/math] 则为 [math]\displaystyle{ r/L\ }[/math]。对于关联函数 [math]\displaystyle{ h(r,t)\ }[/math]标度律(10),也存在某一指数 [math]\displaystyle{ p\ }[/math]使 [math]\displaystyle{ L^p }[/math] 成为联系原始模型和重标度模型的因子;所以有:
-
[math]\displaystyle{ h(r,t) \equiv L^{p}h(r/L,L^yt); }[/math]
(21)
即 [math]\displaystyle{ h(r,t) }[/math] 是 [math]\displaystyle{ r }[/math]和 [math]\displaystyle{ t^{-1/y}\ }[/math] 的 [math]\displaystyle{ p }[/math] 次齐次函数。再由齐次性表达式(2)有:
-
[math]\displaystyle{ h(r,t)h(r,t)\equiv r^p G(r/t^{-1/y}) }[/math]
(22)
其中 [math]\displaystyle{ G\ }[/math]是标度函数。与(10)对比,由临界点处的关联长度服从(11),我们可得[math]\displaystyle{ p=-(d-2+\eta) }[/math] 以及 [math]\displaystyle{ 1/y=\nu\ }[/math]。由此齐次性表达式 [math]\displaystyle{ h(r,t)\ }[/math]得出的标度律[math]\displaystyle{ (2-\eta)\nu=\gamma\ }[/math]依然成立,且再由[math]\displaystyle{ 1/y=\nu }[/math] 和 [math]\displaystyle{ d/y=2-\alpha }[/math],得到超标度律(17) — [math]\displaystyle{ d\nu=2-\alpha\ }[/math]。
因此,块自旋图产生了热力学函数和相关函数的临界点标度关系,以及标度指数之间的 [math]\displaystyle{ d }[/math] 无关和 [math]\displaystyle{ d }[/math] 依赖关系。重正化群理论证实了块自旋图的本质[19,20]。
References 参考文献
[1] C. Domb, The Critical Point (Taylor & Francis, 1996).
[2] M.E. Fisher, Repts. Prog. Phys. 30, part 2 (1967) 615.
[3] C. Domb and D.L. Hunter, Proc. Phys. Soc. 86 (1965) 1147.
[4] B. Widom, J. Chem. Phys. 43 (1965) 3898.
[5] L.P. Kadanoff, Physics 2 (1966) 263.
[6] A.Z. Patashinskii and V.L. Pokrovskii, Soviet Physics JETP 23 (1966) 292.
[7] R.B. Griffiths, Phys. Rev. 158 (1967) 176.
[8] B. Widom, J. Chem. Phys. 41 (1964) 1633.
[9] J.W. Essam and M.E. Fisher, J. Chem. Phys. 38 (1963) 802.
[10] O.K. Rice, J. Chem. Phys. 23 (1955) 169.
[11] R.L. Scott, J. Chem. Phys. 21 (1953) 209.
[12] C. Domb and M.F. Sykes, Proc. Roy. Soc. A 240 (1957) 214.
[13] M.E. Fisher, Physica 25 (1959) 521.
[14] E.A. Guggenheim, J. Chem. Phys. 13 (1945) 253.
[15] M.E. Fisher, J. Math. Phys. 5 (1964) 944.
[16] B. Widom, J. Chem. Phys. 43 (1965) 3892.
[17] P.G. Watson, J. Phys. C1 (1968) 268.
[18] G. Stell, Phys. Rev. Lett. 20 (1968) 533.
[19] K.G. Wilson, Phys. Rev. B 4 (1971) 3174.
[20] K.G. Wilson, Phys. Rev. B 4 (1971) 3184.
[21] K.G. Wilson and M.E. Fisher, Phys. Rev. Lett. 28 (1972) 240.
See also 另见
- Tomasz Downarowicz (2007) Entropy. Scholarpedia, 2(11):3901.
- Eugene M. Izhikevich (2007) Equilibrium. Scholarpedia, 2(10):2014.
- Giovanni Gallavotti (2008) Fluctuations. Scholarpedia, 3(6):5893.
- Cesar A. Hidalgo R. and Albert-Laszlo Barabasi (2008) Scale-free networks. Scholarpedia, 3(1):1716.
- http://www.scholarpedia.org/w/index.php?title=Scaling_laws&action=edit https://imagej.nih.gov/ij/plugins/fraclac/FLHelp/Glossary.htm#scalingrulemmt
编者推荐
集智俱乐部公众号文章
Nature 物理:规模法则制约肿瘤生长 | 集智俱乐部 (swarma.org)https://swarma.org/?p=20903
集智学园
规模法则如何制约生长与死亡——AI&Society 第九期https://campus.swarma.org/course/636
规模的背后——关于规模法则本质的探寻 (swarma.org)https://campus.swarma.org/course/639
复杂世界,简单规则 (swarma.org)https://campus.swarma.org/course/638