第7行: |
第7行: |
| Basic components of Hodgkin–Huxley-type models. Hodgkin–Huxley type models represent the biophysical characteristic of cell membranes. The lipid bilayer is represented as a capacitance (C<SUB>m</SUB>). Voltage-gated and leak ion channels are represented by nonlinear (g<SUB>n</SUB>) and linear (g<SUB>L</SUB>) conductances, respectively. The electrochemical gradients driving the flow of ions are represented by batteries (E), and ion pumps and exchangers are represented by current sources (I<SUB>p</SUB>). | | Basic components of Hodgkin–Huxley-type models. Hodgkin–Huxley type models represent the biophysical characteristic of cell membranes. The lipid bilayer is represented as a capacitance (C<SUB>m</SUB>). Voltage-gated and leak ion channels are represented by nonlinear (g<SUB>n</SUB>) and linear (g<SUB>L</SUB>) conductances, respectively. The electrochemical gradients driving the flow of ions are represented by batteries (E), and ion pumps and exchangers are represented by current sources (I<SUB>p</SUB>). |
| | | |
− | Hodgkin-Huxley 型模型的基本组成部分。Hodgkin-Huxley 型模型代表了细胞膜的生物物理特性。磷脂双分子层表示为一个电容项(''C<SUB>m</SUB>'')。电压门控离子通道和漏离子通道分别用非线性(''g<SUB>n</SUB>'')和线性电导(''g<SUB>L</SUB>'')表示。驱动离子流动的电化学梯度用电池(''E'')表示,离子泵和离子交换器用电流源表示(''I<SUB>p</SUB>'')。 | + | Hodgkin-Huxley 类模型的基本组成部分。Hodgkin-Huxley 类模型代表了细胞膜的生物物理特性。磷脂双分子层表示为一个电容项(<math>C_m</math>)。电压门控离子通道和漏离子通道分别用非线性(<math>g_n</math>)和线性电导(<math>g_L</math>)表示。驱动离子流动的电化学梯度用电池(<math>E</math>)表示,离子泵和离子交换器用电流源表示(<math>I_p</math>)。 |
| | | |
| The '''Hodgkin–Huxley model''', or '''conductance-based model''', is a [[mathematical model]] that describes how [[action potential]]s in [[neuron]]s are initiated and propagated. It is a set of [[nonlinear]] [[differential equation]]s that approximates the electrical characteristics of excitable cells such as neurons and [[cardiac muscle|cardiac myocytes]]. It is a continuous-time [[dynamical system]]. | | The '''Hodgkin–Huxley model''', or '''conductance-based model''', is a [[mathematical model]] that describes how [[action potential]]s in [[neuron]]s are initiated and propagated. It is a set of [[nonlinear]] [[differential equation]]s that approximates the electrical characteristics of excitable cells such as neurons and [[cardiac muscle|cardiac myocytes]]. It is a continuous-time [[dynamical system]]. |
第23行: |
第23行: |
| 典型的 Hodgkin-Huxley 模型将可兴奋细胞的每个成分都当作电子元件来处理(如图所示)。 | | 典型的 Hodgkin-Huxley 模型将可兴奋细胞的每个成分都当作电子元件来处理(如图所示)。 |
| [[磷脂双分子层]]表示为[[电容]]。 | | [[磷脂双分子层]]表示为[[电容]]。 |
− | 电压门控离子通道表示为电导(''g<sub>n</sub>'',其中 n 是特定的离子通道) ,它同时依赖于电压和时间。漏通道表示为线性电导(''g<sub>l</sub>'')。 | + | 电压门控离子通道表示为电导(<math>g_n</math>,其中 n 是特定的离子通道) ,它同时依赖于电压和时间。漏通道表示为线性电导(<math>g_l</math>)。 |
− | 驱使离子流动的电化学梯度表示为电压源(''e<sub>n</sub>''),电压源的电压取决于相关离子种类在细胞内和细胞外的浓度的比值。 | + | 驱使离子流动的电化学梯度表示为电压源(<math>e_n</math>),电压源的电压取决于相关离子种类在细胞内和细胞外的浓度的比值。 |
− | 最后,离子泵表示为电流源(''i<sub>p</sub>'')。 | + | 最后,离子泵表示为电流源(<math>i_p</math>)。 |
− | [[膜电位]]表示为''v<sub>m</sub>''。 | + | [[膜电位]]表示为<math>V_m</math>。 |
| | | |
| Mathematically, the current flowing through the lipid bilayer is written as | | Mathematically, the current flowing through the lipid bilayer is written as |
第43行: |
第43行: |
| Thus, for a cell with sodium and potassium channels, the total current through the membrane is given by: | | Thus, for a cell with sodium and potassium channels, the total current through the membrane is given by: |
| | | |
− | 其中 ''v<sub>i</sub>'' 是 ''i''-th 离子通道的反转电位。 | + | 其中 <math>V_i</math> 是 <math>i</math>-th 离子通道的反转电位。 |
| 因此,对于具有钠和钾离子通道的细胞,通过细胞膜的总电流为: | | 因此,对于具有钠和钾离子通道的细胞,通过细胞膜的总电流为: |
| | | |
第50行: |
第50行: |
| where ''I'' is the total membrane current per unit area, ''C''<sub>''m''</sub> is the membrane capacitance per unit area, ''g''<sub>''K''</sub> and ''g''<sub>''Na''</sub> are the potassium and sodium conductances per unit area, respectively, ''V''<sub>''K'' </sub> and ''V''<sub>''Na''</sub> are the potassium and sodium reversal potentials, respectively, and ''g''<sub>''l''</sub> and ''V''<sub>''l''</sub> are the leak conductance per unit area and leak reversal potential, respectively. The time dependent elements of this equation are ''V''<sub>''m''</sub>, ''g''<sub>''Na''</sub>, and ''g''<sub>''K''</sub>, where the last two conductances depend explicitly on voltage as well. | | where ''I'' is the total membrane current per unit area, ''C''<sub>''m''</sub> is the membrane capacitance per unit area, ''g''<sub>''K''</sub> and ''g''<sub>''Na''</sub> are the potassium and sodium conductances per unit area, respectively, ''V''<sub>''K'' </sub> and ''V''<sub>''Na''</sub> are the potassium and sodium reversal potentials, respectively, and ''g''<sub>''l''</sub> and ''V''<sub>''l''</sub> are the leak conductance per unit area and leak reversal potential, respectively. The time dependent elements of this equation are ''V''<sub>''m''</sub>, ''g''<sub>''Na''</sub>, and ''g''<sub>''K''</sub>, where the last two conductances depend explicitly on voltage as well. |
| | | |
− | 其中 i 为单位面积的总膜电流,Cm 为单位面积的膜电容,gK 和 gNa 分别为单位面积的钾和钠的电导,VK 和 VNa 分别为钾和钠的反转电位,gl 和 Vl 分别为单位面积的漏电导和漏反转电位。 | + | 其中 i 为单位面积的总膜电流,<math>C_m</math>为单位面积的膜电容,<math>g_K</math>和<math>g_{Na}</math>分别为单位面积的钾和钠的电导,<math>V_K</math>和<math>V_{Na}</math>分别为钾和钠的反转电位,<math>g_l</math>和<math>V_l</math>分别为单位面积的漏电导和漏反转电位。 |
− | 这个方程中的时间依赖项为 Vm、 gNa 和 gK,其中最后两个电导项也明确地取决于电压。 | + | 这个方程中的时间依赖项为<math>V_m</math>、<math>g_{Na}</math>和<math>g_K</math>,其中最后两个电导项也明确地取决于电压。 |
| | | |
| ==Ionic current characterization== | | ==Ionic current characterization== |
| | | |
− | = 离子电流的描述 = | + | ==离子电流的描述== |
| | | |
| In voltage-gated ion channels, the channel conductance <math>g_l</math> is a function of both time and voltage (<math>g_n(t,V)</math> in the figure), while in leak channels <math>g_l</math> is a constant (<math>g_L</math> in the figure). The current generated by ion pumps is dependent on the ionic species specific to that pump. The following sections will describe these formulations in more detail. | | In voltage-gated ion channels, the channel conductance <math>g_l</math> is a function of both time and voltage (<math>g_n(t,V)</math> in the figure), while in leak channels <math>g_l</math> is a constant (<math>g_L</math> in the figure). The current generated by ion pumps is dependent on the ionic species specific to that pump. The following sections will describe these formulations in more detail. |
第79行: |
第79行: |
| where ''I'' is the current per unit area, and <math>\alpha_i </math> and <math>\beta_i </math> are rate constants for the ''i''-th ion channel, which depend on voltage but not time. <math>\bar{g}_n</math> is the maximal value of the conductance. ''n'', ''m'', and ''h'' are dimensionless quantities between 0 and 1 that are associated with potassium channel activation, sodium channel activation, and sodium channel inactivation, respectively. For <math> p = (n, m, h)</math>, <math> \alpha_p </math> and <math> \beta_p </math> take the form | | where ''I'' is the current per unit area, and <math>\alpha_i </math> and <math>\beta_i </math> are rate constants for the ''i''-th ion channel, which depend on voltage but not time. <math>\bar{g}_n</math> is the maximal value of the conductance. ''n'', ''m'', and ''h'' are dimensionless quantities between 0 and 1 that are associated with potassium channel activation, sodium channel activation, and sodium channel inactivation, respectively. For <math> p = (n, m, h)</math>, <math> \alpha_p </math> and <math> \beta_p </math> take the form |
| | | |
− | 其中 i 是单位面积的电流,而 alpha _ i 和 beta _ i 是 i-th 离子通道的速率常数,它取决于电压而非时间。 | + | 其中<math>I</math>是单位面积的电流,而<math>alpha_i</math>和<math>beta_i</math>是 <math>i</math>-th 离子通道的速率常数,它取决于电压而非时间。 |
− | bar{ g } _ n 是电导的最大值。 | + | <math>bar{g}_n</math>是电导的最大值。 |
| N、 m 和 h 是0和1之间的无量纲量,分别与钾通道激活、钠通道激活和钠通道失活有关。 | | N、 m 和 h 是0和1之间的无量纲量,分别与钾通道激活、钠通道激活和钠通道失活有关。 |
− | 对于 p = (n,m,h) ,alpha _ p 和 beta _ p 的形式是 | + | 对于 p = (n,m,h) ,<math>alpha_p</math>和<math>beta_p</math>的形式是 |
| | | |
| : <math>\alpha_p(V_m) = p_\infty(V_m)/\tau_p</math> | | : <math>\alpha_p(V_m) = p_\infty(V_m)/\tau_p</math> |
第174行: |
第174行: |
| The Hodgkin–Huxley model can be thought of as a [[differential equation]] system with four [[state variable]]s, <math>V_m(t), n(t), m(t)</math>, and <math>h(t)</math>, that change with respect to time <math>t</math>. The system is difficult to study because it is a [[nonlinear|nonlinear system]] and cannot be solved analytically. However, there are many numerical methods available to analyze the system. Certain properties and general behaviors, such as [[limit cycle]]s, can be proven to exist. | | The Hodgkin–Huxley model can be thought of as a [[differential equation]] system with four [[state variable]]s, <math>V_m(t), n(t), m(t)</math>, and <math>h(t)</math>, that change with respect to time <math>t</math>. The system is difficult to study because it is a [[nonlinear|nonlinear system]] and cannot be solved analytically. However, there are many numerical methods available to analyze the system. Certain properties and general behaviors, such as [[limit cycle]]s, can be proven to exist. |
| | | |
− | 可以认为Hodgkin-Huxley 模型是一个具有4个状态变量 v _ m (t) ,n (t) ,m (t)和 h (t)的微分方程系统,它们随着时间 t 变化。 | + | 可以认为Hodgkin-Huxley 模型是一个具有4个状态变量 <math>V_m(t), n(t), m(t)</math>, 和 <math>h(t)</math>的微分方程系统,它们随着时间<math>t</math>变化。 |
| 这个系统很难研究,因为它是一个非线性系统,无法用解析法求解。 | | 这个系统很难研究,因为它是一个非线性系统,无法用解析法求解。 |
| 然而,有许多数值方法可用于分析该系统。可以证明某些性质和一般行为(如极限环)是存在的。 | | 然而,有许多数值方法可用于分析该系统。可以证明某些性质和一般行为(如极限环)是存在的。 |
第185行: |
第185行: |
| | | |
| 由于有四个状态变量,想象相空间中的路径会比较困难。 | | 由于有四个状态变量,想象相空间中的路径会比较困难。 |
− | 通常选择两个变量,电压''v<sub>m</sub>(t)''和钾门控变量'' n (t) '',这样就能想象出极限环。 | + | 通常选择两个变量,电压<math>V_m(t)</math>和钾门控变量<math>n(t)</math>,这样就能想象出极限环。 |
| 但是,要注意这只是一个想象四维系统的特殊方法,并不能证明极限环的存在性。 | | 但是,要注意这只是一个想象四维系统的特殊方法,并不能证明极限环的存在性。 |
| | | |
第206行: |
第206行: |
| If the injected current <math>I</math> were used as a [[bifurcation theory|bifurcation parameter]], then the Hodgkin–Huxley model undergoes a [[Hopf bifurcation]]. As with most neuronal models, increasing the injected current will increase the firing rate of the neuron. One consequence of the Hopf bifurcation is that there is a minimum firing rate. This means that either the neuron is not firing at all (corresponding to zero frequency), or firing at the minimum firing rate. Because of the [[all-or-none law|all-or-none principle]], there is no smooth increase in [[action potential]] amplitude, but rather there is a sudden "jump" in amplitude. The resulting transition is known as a [http://www.scholarpedia.org/article/Canards canard]. | | If the injected current <math>I</math> were used as a [[bifurcation theory|bifurcation parameter]], then the Hodgkin–Huxley model undergoes a [[Hopf bifurcation]]. As with most neuronal models, increasing the injected current will increase the firing rate of the neuron. One consequence of the Hopf bifurcation is that there is a minimum firing rate. This means that either the neuron is not firing at all (corresponding to zero frequency), or firing at the minimum firing rate. Because of the [[all-or-none law|all-or-none principle]], there is no smooth increase in [[action potential]] amplitude, but rather there is a sudden "jump" in amplitude. The resulting transition is known as a [http://www.scholarpedia.org/article/Canards canard]. |
| | | |
− | 如果将注入电流 i 作为分岔参数,那么 Hodgkin-Huxley 模型将经历一个霍普夫分岔。和大多数神经元模型一样,增加注入电流会增加神经元的放电频率。霍普夫分岔的一个结果就是有一个最低的开火率。这意味着要么神经元根本没有放电(对应于零频率) ,要么以最低放电速率放电。由于“全有或全无”原理,动作电位振幅的增加不是平稳的,而是突然的“跳跃”。由此产生的转变被称为谣言。 | + | 如果将注入电流 <math>I</math> 作为分岔参数,那么 Hodgkin-Huxley 模型将经历一个霍普夫分岔。 |
− | 如果将注入电流 i 作为分岔参数,那么 Hodgkin-Huxley 模型将经历一个霍普夫分岔。
| |
| 和大多数神经元模型一样,增加注入电流会增加神经元的发放率。 | | 和大多数神经元模型一样,增加注入电流会增加神经元的发放率。 |
| 霍普夫分岔的一个结果就是存在一个最低的发放率。 | | 霍普夫分岔的一个结果就是存在一个最低的发放率。 |
− | 这意味着要么神经元根本没有发放(对应于零频率) ,要么以最低发放率发放。
| + | 这意味着神经元要么根本没有发放(对应于零频率) ,要么以最低发放率放电。 |
| 由于“全或无”原理,动作电位的幅度不存在平稳的增加,而是幅度上的突然“跳跃”。 | | 由于“全或无”原理,动作电位的幅度不存在平稳的增加,而是幅度上的突然“跳跃”。 |
− | 由此产生的转变被称为鸭解。
| + | 由此产生的转变被称为鸭解canard。 |
| | | |
| ==Improvements and alternative models== | | ==Improvements and alternative models== |