更改

添加111字节 、 2022年4月4日 (一) 15:38
无编辑摘要
第7行: 第7行:  
Large-scale brain networks (also known as intrinsic brain networks) are collections of widespread brain regions showing functional connectivity by statistical analysis of the fMRI BOLD signal or other recording methods such as EEG, PET and MEG. An emerging paradigm in neuroscience is that cognitive tasks are performed not by individual brain regions working in isolation but by networks consisting of several discrete brain regions that are said to be "functionally connected". Functional connectivity networks may be found using algorithms such as cluster analysis, spatial independent component analysis (ICA), seed based, and others. Synchronized brain regions may also be identified using long-range synchronization of the EEG, MEG, or other dynamic brain signals.
 
Large-scale brain networks (also known as intrinsic brain networks) are collections of widespread brain regions showing functional connectivity by statistical analysis of the fMRI BOLD signal or other recording methods such as EEG, PET and MEG. An emerging paradigm in neuroscience is that cognitive tasks are performed not by individual brain regions working in isolation but by networks consisting of several discrete brain regions that are said to be "functionally connected". Functional connectivity networks may be found using algorithms such as cluster analysis, spatial independent component analysis (ICA), seed based, and others. Synchronized brain regions may also be identified using long-range synchronization of the EEG, MEG, or other dynamic brain signals.
   −
大规模脑网络Large-scale brain networks(也称为内在大脑网络intrinsic brain networks)是在对基于血氧水平依赖BOLD效应的功能性磁共振成像fMRI信号的统计分析或其他记录方法(如脑电图EEG、正电子发射断层扫描技术PET和脑磁图MEG)中,表现出功能连接的脑区的集合。根据神经科学中一个新出现的范式,认知任务不是由单个脑区独立执行的,而是由几个互不相连的脑区“功能连接”组成的网络执行的。功能连接网络可以通过数据聚类Cluster analysis、空间独立元素分析Spatial ICA、种子点方法seed-based等算法来发现。同步的脑区也可以用脑电图、脑磁图或其他动态脑信号的远程同步来识别。
+
'''<font color="#ff8000">大规模脑网络Large-scale brain networks</font>'''(也称为'''<font color="#ff8000">内在大脑网络intrinsic brain networks</font>''')是在对'''<font color="#ff8000">基于血氧水平依赖效应的功能性磁共振成像信号fMRI BOLD signal</font>'''的统计分析或其他记录方法(如脑电图EEG、正电子发射断层扫描技术PET和脑磁图MEG)中,表现出功能连接的脑区的集合。根据神经科学中一个新出现的范式,认知任务不是由单个脑区独立执行的,而是由几个互不相连的脑区“功能连接”组成的网络执行的。功能连接网络可以通过数据聚类Cluster analysis、空间独立元素分析Spatial ICA、种子点方法seed-based等算法来发现。同步的脑区也可以用脑电图、脑磁图或其他动态脑信号的远程同步来识别。
    
The set of identified brain areas that are linked together in a large-scale network varies with cognitive function.<ref name="Bressler2">{{cite journal|last1=Bressler|first1=Steven L.|title=Neurocognitive networks|journal=Scholarpedia|volume=3|issue=2|pages=1567|doi=10.4249/scholarpedia.1567|year=2008|bibcode=2008SchpJ...3.1567B|doi-access=free}}</ref> When the cognitive state is not explicit (i.e., the subject is at "rest"), the large-scale brain network is a [[Resting state fMRI|resting state]] network (RSN). As a physical system with graph-like properties,<ref name="Bressler" /> a large-scale brain network has both nodes and edges and cannot be identified simply by the co-activation of brain areas. In recent decades, the analysis of brain networks was made feasible by advances in imaging techniques as well as new tools from [[graph theory]] and [[Dynamical systems theory|dynamical systems]].
 
The set of identified brain areas that are linked together in a large-scale network varies with cognitive function.<ref name="Bressler2">{{cite journal|last1=Bressler|first1=Steven L.|title=Neurocognitive networks|journal=Scholarpedia|volume=3|issue=2|pages=1567|doi=10.4249/scholarpedia.1567|year=2008|bibcode=2008SchpJ...3.1567B|doi-access=free}}</ref> When the cognitive state is not explicit (i.e., the subject is at "rest"), the large-scale brain network is a [[Resting state fMRI|resting state]] network (RSN). As a physical system with graph-like properties,<ref name="Bressler" /> a large-scale brain network has both nodes and edges and cannot be identified simply by the co-activation of brain areas. In recent decades, the analysis of brain networks was made feasible by advances in imaging techniques as well as new tools from [[graph theory]] and [[Dynamical systems theory|dynamical systems]].
第36行: 第36行:  
因为大脑网络可以用不同的分辨率和不同的神经生物学特性来识别,所以没有适合所有情况的通用大脑网络图谱。在承认这个问题的同时,Uddin,Yeo,和 Spreng 在2019年提出,以下六个网络应该被定义为核心网络,基于来自多个研究的聚合证据,以促进研究人员之间的交流。
 
因为大脑网络可以用不同的分辨率和不同的神经生物学特性来识别,所以没有适合所有情况的通用大脑网络图谱。在承认这个问题的同时,Uddin,Yeo,和 Spreng 在2019年提出,以下六个网络应该被定义为核心网络,基于来自多个研究的聚合证据,以促进研究人员之间的交流。
   −
===Default Mode (Medial frontoparietal)===
+
=== Default Mode (Medial frontoparietal)===
 
{{Main|Default mode network}}
 
{{Main|Default mode network}}
* The default mode network is active when an individual is awake and at rest. It preferentially activates when individuals focus on internally-oriented tasks such as daydreaming, envisioning the future, retrieving memories, and [[theory of mind]]. It is negatively correlated with brain systems that focus on external visual signals. It is the most widely researched network.<ref name="Bressler" /><ref name="Bassett" /><ref>{{Cite journal|date=2012-08-15|title=The serendipitous discovery of the brain's default network|journal=NeuroImage|language=en|volume=62|issue=2|pages=1137–1145|doi=10.1016/j.neuroimage.2011.10.035|pmid=22037421|issn=1053-8119|last1=Buckner|first1=Randy L.|s2cid=9880586}}</ref><ref name="Riedl" /><ref name="Yuan">
+
*The default mode network is active when an individual is awake and at rest. It preferentially activates when individuals focus on internally-oriented tasks such as daydreaming, envisioning the future, retrieving memories, and [[theory of mind]]. It is negatively correlated with brain systems that focus on external visual signals. It is the most widely researched network.<ref name="Bressler" /><ref name="Bassett" /><ref>{{Cite journal|date=2012-08-15|title=The serendipitous discovery of the brain's default network|journal=NeuroImage|language=en|volume=62|issue=2|pages=1137–1145|doi=10.1016/j.neuroimage.2011.10.035|pmid=22037421|issn=1053-8119|last1=Buckner|first1=Randy L.|s2cid=9880586}}</ref><ref name="Riedl" /><ref name="Yuan">
 
{{cite journal|last1=Yuan|first1=Rui|last2=Di|first2=Xin|last3=Taylor|first3=Paul A.|last4=Gohel|first4=Suril|last5=Tsai|first5=Yuan-Hsiung|last6=Biswal|first6=Bharat B.|title=Functional topography of the thalamocortical system in human|journal=Brain Structure and Function|date=30 April 2015|doi=10.1007/s00429-015-1018-7|pmid=25924563|pmc=6363530|volume=221|issue=4|pages=1971–1984}}</ref><ref name="Bell">{{cite journal|last1=Bell|first1=Peter T.|last2=Shine|first2=James M.|title=Estimating Large-Scale Network Convergence in the Human Functional Connectome|journal=Brain Connectivity|date=2015-11-09|volume=5|issue=9|doi=10.1089/brain.2015.0348|pmid=26005099|pages=565–74}}</ref><ref name="Heine">{{cite journal|last1=Heine|first1=Lizette|last2=Soddu|first2=Andrea|last3=Gomez|first3=Francisco|last4=Vanhaudenhuyse|first4=Audrey|last5=Tshibanda|first5=Luaba|last6=Thonnard|first6=Marie|last7=Charland-Verville|first7=Vanessa|last8=Kirsch|first8=Murielle|last9=Laureys|first9=Steven|last10=Demertzi|first10=Athena|title=Resting state networks and consciousness. Alterations of multiple resting state network connectivity in physiological, pharmacological and pathological consciousness states.|journal=Frontiers in Psychology|date=2012|volume=3|pages=295|doi=10.3389/fpsyg.2012.00295|pmid=22969735|pmc=3427917|doi-access=free}}</ref><ref name="Yeo">{{cite journal|last1=Yeo|first1=B. T. Thomas|last2=Krienen|first2=Fenna M.|last3=Sepulcre|first3=Jorge|last4=Sabuncu|first4=Mert R.|last5=Lashkari|first5=Danial|last6=Hollinshead|first6=Marisa|last7=Roffman|first7=Joshua L.|last8=Smoller|first8=Jordan W.|last9=Zöllei|first9=Lilla|last10=Polimeni|first10=Jonathan R.|last11=Fischl|first11=Bruce|last12=Liu|first12=Hesheng|last13=Buckner|first13=Randy L.|title=The organization of the human cerebral cortex estimated by intrinsic functional connectivity|journal=Journal of Neurophysiology|date=2011-09-01|volume=106|issue=3|pages=1125–1165|doi=10.1152/jn.00338.2011|pmid=21653723|pmc=3174820|bibcode=2011NatSD...2E0031H }}</ref><ref name="Shafiei">{{cite journal|last1=Shafiei|first1=Golia|last2=Zeighami|first2=Yashar|last3=Clark|first3=Crystal A.|last4=Coull|first4=Jennifer T.|last5=Nagano-Saito|first5=Atsuko|last6=Leyton|first6=Marco|last7=Dagher|first7=Alain|last8=Mišić|first8=Bratislav|title=Dopamine Signaling Modulates the Stability and Integration of Intrinsic Brain Networks|journal=Cerebral Cortex|date=2018-10-01|volume=29|issue=1|pages=397–409|doi=10.1093/cercor/bhy264|pmid=30357316|pmc=6294404 }}</ref><ref name="Bailey">{{cite journal|last1=Bailey|first1=Stephen K.|last2=Aboud|first2=Katherine S.|last3=Nguyen|first3=Tin Q.|last4=Cutting|first4=Laurie E.|title=Applying a network framework to the neurobiology of reading and dyslexia|journal=Journal of Neurodevelopmental Disorders|date=13 December 2018|volume=10|issue=1|page=37|doi=10.1186/s11689-018-9251-z|pmid=30541433|pmc=6291929 }}</ref>
 
{{cite journal|last1=Yuan|first1=Rui|last2=Di|first2=Xin|last3=Taylor|first3=Paul A.|last4=Gohel|first4=Suril|last5=Tsai|first5=Yuan-Hsiung|last6=Biswal|first6=Bharat B.|title=Functional topography of the thalamocortical system in human|journal=Brain Structure and Function|date=30 April 2015|doi=10.1007/s00429-015-1018-7|pmid=25924563|pmc=6363530|volume=221|issue=4|pages=1971–1984}}</ref><ref name="Bell">{{cite journal|last1=Bell|first1=Peter T.|last2=Shine|first2=James M.|title=Estimating Large-Scale Network Convergence in the Human Functional Connectome|journal=Brain Connectivity|date=2015-11-09|volume=5|issue=9|doi=10.1089/brain.2015.0348|pmid=26005099|pages=565–74}}</ref><ref name="Heine">{{cite journal|last1=Heine|first1=Lizette|last2=Soddu|first2=Andrea|last3=Gomez|first3=Francisco|last4=Vanhaudenhuyse|first4=Audrey|last5=Tshibanda|first5=Luaba|last6=Thonnard|first6=Marie|last7=Charland-Verville|first7=Vanessa|last8=Kirsch|first8=Murielle|last9=Laureys|first9=Steven|last10=Demertzi|first10=Athena|title=Resting state networks and consciousness. Alterations of multiple resting state network connectivity in physiological, pharmacological and pathological consciousness states.|journal=Frontiers in Psychology|date=2012|volume=3|pages=295|doi=10.3389/fpsyg.2012.00295|pmid=22969735|pmc=3427917|doi-access=free}}</ref><ref name="Yeo">{{cite journal|last1=Yeo|first1=B. T. Thomas|last2=Krienen|first2=Fenna M.|last3=Sepulcre|first3=Jorge|last4=Sabuncu|first4=Mert R.|last5=Lashkari|first5=Danial|last6=Hollinshead|first6=Marisa|last7=Roffman|first7=Joshua L.|last8=Smoller|first8=Jordan W.|last9=Zöllei|first9=Lilla|last10=Polimeni|first10=Jonathan R.|last11=Fischl|first11=Bruce|last12=Liu|first12=Hesheng|last13=Buckner|first13=Randy L.|title=The organization of the human cerebral cortex estimated by intrinsic functional connectivity|journal=Journal of Neurophysiology|date=2011-09-01|volume=106|issue=3|pages=1125–1165|doi=10.1152/jn.00338.2011|pmid=21653723|pmc=3174820|bibcode=2011NatSD...2E0031H }}</ref><ref name="Shafiei">{{cite journal|last1=Shafiei|first1=Golia|last2=Zeighami|first2=Yashar|last3=Clark|first3=Crystal A.|last4=Coull|first4=Jennifer T.|last5=Nagano-Saito|first5=Atsuko|last6=Leyton|first6=Marco|last7=Dagher|first7=Alain|last8=Mišić|first8=Bratislav|title=Dopamine Signaling Modulates the Stability and Integration of Intrinsic Brain Networks|journal=Cerebral Cortex|date=2018-10-01|volume=29|issue=1|pages=397–409|doi=10.1093/cercor/bhy264|pmid=30357316|pmc=6294404 }}</ref><ref name="Bailey">{{cite journal|last1=Bailey|first1=Stephen K.|last2=Aboud|first2=Katherine S.|last3=Nguyen|first3=Tin Q.|last4=Cutting|first4=Laurie E.|title=Applying a network framework to the neurobiology of reading and dyslexia|journal=Journal of Neurodevelopmental Disorders|date=13 December 2018|volume=10|issue=1|page=37|doi=10.1186/s11689-018-9251-z|pmid=30541433|pmc=6291929 }}</ref>
   第48行: 第48行:  
*默认模式网络在个人清醒和休息时处于活动状态。当个体专注于面向内部的任务时,比如做白日梦、展望未来、回忆和心理理论,它就会优先激活。它与专注于外部视觉信号的大脑系统负相关。它是研究最广泛的网络。
 
*默认模式网络在个人清醒和休息时处于活动状态。当个体专注于面向内部的任务时,比如做白日梦、展望未来、回忆和心理理论,它就会优先激活。它与专注于外部视觉信号的大脑系统负相关。它是研究最广泛的网络。
   −
===Salience (Midcingulo-Insular) ===
+
=== Salience (Midcingulo-Insular)===
 
{{Main|Salience network}}
 
{{Main|Salience network}}
 
*The salience network consists of several structures, including the anterior (bilateral) insula, dorsal anterior cingulate cortex, and three subcortical structures which are the ventral striatum, substantia nigra/ventral tegmental region.<ref>{{Cite journal|last1=Steimke|first1=Rosa|last2=Nomi|first2=Jason S.|last3=Calhoun|first3=Vince D.|last4=Stelzel|first4=Christine|last5=Paschke|first5=Lena M.|last6=Gaschler|first6=Robert|last7=Goschke|first7=Thomas|last8=Walter|first8=Henrik|last9=Uddin|first9=Lucina Q.|date=2017-12-01|title=Salience network dynamics underlying successful resistance of temptation|journal=Social Cognitive and Affective Neuroscience|language=en|volume=12|issue=12|pages=1928–1939|doi=10.1093/scan/nsx123|pmid=29048582|pmc=5716209|issn=1749-5016|doi-access=free}}</ref><ref name=":0">{{Citation|last=Menon|first=V.|title=Brain Mapping|chapter=Salience Network|date=2015-01-01|chapter-url=http://www.sciencedirect.com/science/article/pii/B978012397025100052X|pages=597–611|editor-last=Toga|editor-first=Arthur W.|publisher=Academic Press|isbn=978-0-12-397316-0|access-date=2019-12-08|doi=10.1016/B978-0-12-397025-1.00052-X}}</ref> It plays the key role of monitoring the [[Salience (neuroscience)|salience]] of external inputs and internal brain events.<ref name="Riedl" /><ref name="Bressler" /><ref name="Bassett" /><ref name="Yuan" /><ref name="Heine" /><ref name="Yeo" /><ref name="Shafiei" /> Specifically, it aids in directing attention by identifying important biological and cognitive events.<ref name=":0" /><ref name="Bailey" />
 
*The salience network consists of several structures, including the anterior (bilateral) insula, dorsal anterior cingulate cortex, and three subcortical structures which are the ventral striatum, substantia nigra/ventral tegmental region.<ref>{{Cite journal|last1=Steimke|first1=Rosa|last2=Nomi|first2=Jason S.|last3=Calhoun|first3=Vince D.|last4=Stelzel|first4=Christine|last5=Paschke|first5=Lena M.|last6=Gaschler|first6=Robert|last7=Goschke|first7=Thomas|last8=Walter|first8=Henrik|last9=Uddin|first9=Lucina Q.|date=2017-12-01|title=Salience network dynamics underlying successful resistance of temptation|journal=Social Cognitive and Affective Neuroscience|language=en|volume=12|issue=12|pages=1928–1939|doi=10.1093/scan/nsx123|pmid=29048582|pmc=5716209|issn=1749-5016|doi-access=free}}</ref><ref name=":0">{{Citation|last=Menon|first=V.|title=Brain Mapping|chapter=Salience Network|date=2015-01-01|chapter-url=http://www.sciencedirect.com/science/article/pii/B978012397025100052X|pages=597–611|editor-last=Toga|editor-first=Arthur W.|publisher=Academic Press|isbn=978-0-12-397316-0|access-date=2019-12-08|doi=10.1016/B978-0-12-397025-1.00052-X}}</ref> It plays the key role of monitoring the [[Salience (neuroscience)|salience]] of external inputs and internal brain events.<ref name="Riedl" /><ref name="Bressler" /><ref name="Bassett" /><ref name="Yuan" /><ref name="Heine" /><ref name="Yeo" /><ref name="Shafiei" /> Specifically, it aids in directing attention by identifying important biological and cognitive events.<ref name=":0" /><ref name="Bailey" />
第60行: 第60行:  
*这个网络包括腹侧注意网络,主要包括右半球的颞顶联合区和腹侧额叶皮层。当行为相关的刺激意外发生时,这些区域会做出反应。腹侧注意网络在使用自上而下加工的集中注意过程中被抑制,例如在视觉搜索某物时。这种反应可以防止目标驱动的注意力被非相关的刺激分散。当找到目标或关于目标的相关信息时,它再次激活。
 
*这个网络包括腹侧注意网络,主要包括右半球的颞顶联合区和腹侧额叶皮层。当行为相关的刺激意外发生时,这些区域会做出反应。腹侧注意网络在使用自上而下加工的集中注意过程中被抑制,例如在视觉搜索某物时。这种反应可以防止目标驱动的注意力被非相关的刺激分散。当找到目标或关于目标的相关信息时,它再次激活。
   −
===Attention (Dorsal frontoparietal) ===
+
===Attention (Dorsal frontoparietal)===
 
{{Main|Dorsal attention network}}
 
{{Main|Dorsal attention network}}
*This network is involved in the voluntary, top-down deployment of attention.<ref name="Riedl" /><ref name="Yuan" /><ref name="Bell" /><ref name="Yeo" /><ref name="Shafiei" /><ref name="Vossel">{{cite journal|last1=Vossel|first1=Simone|last2=Geng|first2=Joy J.|last3=Fink|first3=Gereon R.|title=Dorsal and Ventral Attention Systems: Distinct Neural Circuits but Collaborative Roles|journal=The Neuroscientist|date=2014|volume=20|issue=2|pages=150–159|doi=10.1177/1073858413494269|pmid=23835449|pmc=4107817}}</ref><ref name="Hutton">{{cite journal|last1=Hutton|first1=John S.|last2=Dudley|first2=Jonathan|last3=Horowitz-Kraus|first3=Tzipi|last4=DeWitt|first4=Tom|last5=Holland|first5=Scott K.|title=Functional Connectivity of Attention, Visual, and Language Networks During Audio, Illustrated, and Animated Stories in Preschool-Age Children|journal=Brain Connectivity|date=1 September 2019|volume=9|issue=7|pages=580–592|doi=10.1089/brain.2019.0679|pmid=31144523|pmc=6775495|ref=Hutton}}</ref> Within the dorsal attention network, the intraparietal sulcus and frontal eye fields influence the visual areas of the brain. These influencing factors allow for the orientation of attention.<ref>{{Cite journal|last1=Fox|first1=Michael D.|last2=Corbetta|first2=Maurizio|last3=Snyder|first3=Abraham Z.|last4=Vincent|first4=Justin L.|last5=Raichle|first5=Marcus E.|date=2006-06-27|title=Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems|journal=Proceedings of the National Academy of Sciences|language=en|volume=103|issue=26|pages=10046–10051|doi=10.1073/pnas.0604187103|issn=0027-8424|pmid=16788060|pmc=1480402|bibcode=2006PNAS..10310046F|doi-access=free}}</ref><ref name="Vossel" /><ref name="Bailey" />
+
* This network is involved in the voluntary, top-down deployment of attention.<ref name="Riedl" /><ref name="Yuan" /><ref name="Bell" /><ref name="Yeo" /><ref name="Shafiei" /><ref name="Vossel">{{cite journal|last1=Vossel|first1=Simone|last2=Geng|first2=Joy J.|last3=Fink|first3=Gereon R.|title=Dorsal and Ventral Attention Systems: Distinct Neural Circuits but Collaborative Roles|journal=The Neuroscientist|date=2014|volume=20|issue=2|pages=150–159|doi=10.1177/1073858413494269|pmid=23835449|pmc=4107817}}</ref><ref name="Hutton">{{cite journal|last1=Hutton|first1=John S.|last2=Dudley|first2=Jonathan|last3=Horowitz-Kraus|first3=Tzipi|last4=DeWitt|first4=Tom|last5=Holland|first5=Scott K.|title=Functional Connectivity of Attention, Visual, and Language Networks During Audio, Illustrated, and Animated Stories in Preschool-Age Children|journal=Brain Connectivity|date=1 September 2019|volume=9|issue=7|pages=580–592|doi=10.1089/brain.2019.0679|pmid=31144523|pmc=6775495|ref=Hutton}}</ref> Within the dorsal attention network, the intraparietal sulcus and frontal eye fields influence the visual areas of the brain. These influencing factors allow for the orientation of attention.<ref>{{Cite journal|last1=Fox|first1=Michael D.|last2=Corbetta|first2=Maurizio|last3=Snyder|first3=Abraham Z.|last4=Vincent|first4=Justin L.|last5=Raichle|first5=Marcus E.|date=2006-06-27|title=Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems|journal=Proceedings of the National Academy of Sciences|language=en|volume=103|issue=26|pages=10046–10051|doi=10.1073/pnas.0604187103|issn=0027-8424|pmid=16788060|pmc=1480402|bibcode=2006PNAS..10310046F|doi-access=free}}</ref><ref name="Vossel" /><ref name="Bailey" />
      第117行: 第117行:  
*Language<ref name="Bressler" /><ref name="Hutton" />
 
*Language<ref name="Bressler" /><ref name="Hutton" />
 
*Lateral visual<ref name="Yuan" /><ref name="Bell" /><ref name="Heine" />
 
*Lateral visual<ref name="Yuan" /><ref name="Bell" /><ref name="Heine" />
*Temporal<ref name="Yeo" /><ref name="Shafiei" />
+
* Temporal<ref name="Yeo" /><ref name="Shafiei" />
 
*Visual perception/imagery<ref name="Hutton" />
 
*Visual perception/imagery<ref name="Hutton" />
   第135行: 第135行:  
*听觉
 
*听觉
 
*右/左执行
 
*右/左执行
* 小脑
+
*小脑
* 空间注意
+
*空间注意
 
*语言
 
*语言
* 外侧视觉
+
*外侧视觉
 
*颞视知觉/图像
 
*颞视知觉/图像
  
43

个编辑