“因果涌现”的版本间的差异
跳到导航
跳到搜索
(整体梗概) |
(更抽象的定义) |
||
第1行: | 第1行: | ||
− | + | 所谓的因果涌现是指动力系统的一类特殊的[[涌现]]现象,即系统在宏观尺度会展现出更强的因果特性。因此,因果涌现可以用因果性来定量刻画[[涌现]]这一通常难以刻画的复杂系统中的重要概念。 | |
+ | |||
+ | 特别的,对于一类马尔可夫动力学系统来说,在对其状态空间进行适当的粗粒化以后,所形成的宏观动力学会展现出比微观更强的因果特性,即称该系统发生了因果涌现。这里,所谓的马尔可夫动力学系统是指系统在某一时刻的状态仅仅依赖于系统上一时刻所处的状态,而与更早的状态无关。所谓的粗粒化是指对系统的状态空间进行约简的一种方法,它往往可以表示为一个具有降维特征的函数映射。所谓的宏观动力学是指在被粗粒化后的新状态空间上的随附的(supervenes)动力学,它完全决定于微观的动力学和粗粒化方式。关于因果特性的强弱一般可以用[[有效信息]](Effective Information,简称EI)来衡量。因果涌现这一概念最早由美国理论神经生物学家[[Erik hoel|Erik Hoel]]于2009年提出。 | ||
=== 历史 === | === 历史 === |
2022年6月15日 (三) 16:10的版本
所谓的因果涌现是指动力系统的一类特殊的涌现现象,即系统在宏观尺度会展现出更强的因果特性。因此,因果涌现可以用因果性来定量刻画涌现这一通常难以刻画的复杂系统中的重要概念。
特别的,对于一类马尔可夫动力学系统来说,在对其状态空间进行适当的粗粒化以后,所形成的宏观动力学会展现出比微观更强的因果特性,即称该系统发生了因果涌现。这里,所谓的马尔可夫动力学系统是指系统在某一时刻的状态仅仅依赖于系统上一时刻所处的状态,而与更早的状态无关。所谓的粗粒化是指对系统的状态空间进行约简的一种方法,它往往可以表示为一个具有降维特征的函数映射。所谓的宏观动力学是指在被粗粒化后的新状态空间上的随附的(supervenes)动力学,它完全决定于微观的动力学和粗粒化方式。关于因果特性的强弱一般可以用有效信息(Effective Information,简称EI)来衡量。因果涌现这一概念最早由美国理论神经生物学家Erik Hoel于2009年提出。