第100行: |
第100行: |
| 文件:图14 上半平面模型,黑白三角形镶嵌(图片来源于网络).jpg|图14:上半平面模型,黑白三角形镶嵌(图片来源于网络) | | 文件:图14 上半平面模型,黑白三角形镶嵌(图片来源于网络).jpg|图14:上半平面模型,黑白三角形镶嵌(图片来源于网络) |
| 文件:图13 以共形圆盘为表现形式的艺术作品(图片源于网络)2.jpg|图13:以共形圆盘为表现形式的艺术作品(图片源于网络) | | 文件:图13 以共形圆盘为表现形式的艺术作品(图片源于网络)2.jpg|图13:以共形圆盘为表现形式的艺术作品(图片源于网络) |
− | </gallery>另一种常见的共形模型是上半平面模型(全称贝尔特拉米-庞加莱半平面,简称半平面模型),它是下部有边界而上部无限开放的半平面。在半平面模型中,自上而下的层级非常显著——类比树结构,半平面上部无穷远处对应着树的根节点,而下部边缘对应叶子节点。 | + | </gallery> |
| + | 另一种常见的共形模型是上半平面模型(全称贝尔特拉米-庞加莱半平面,简称半平面模型),它是下部有边界而上部无限开放的半平面。在半平面模型中,自上而下的层级非常显著——类比树结构,半平面上部无穷远处对应着树的根节点,而下部边缘对应叶子节点。 |
| | | |
| | | |
第106行: |
第107行: |
| 文件:图14 上半平面模型,五边形镶嵌(图片来源于维基百科).png|图14:上半平面模型,五边形镶嵌(图片来源于维基百科) | | 文件:图14 上半平面模型,五边形镶嵌(图片来源于维基百科).png|图14:上半平面模型,五边形镶嵌(图片来源于维基百科) |
| 文件:图14 上半平面模型,黑白三角形镶嵌(图片来源于网络).jpg|图14:上半平面模型,黑白三角形镶嵌(图片来源于网络) | | 文件:图14 上半平面模型,黑白三角形镶嵌(图片来源于网络).jpg|图14:上半平面模型,黑白三角形镶嵌(图片来源于网络) |
− | </gallery>在半平面模型中,空间的指数增长在下部边界附近更为显著。由于具有共形性,半平面模型上的平动和转动也保持角度不变。<gallery widths="400" heights="400" mode="packed"> | + | </gallery> |
| + | 在半平面模型中,空间的指数增长在下部边界附近更为显著。由于具有共形性,半平面模型上的平动和转动也保持角度不变。<gallery widths="350" heights="400" mode="packed"> |
| 文件:图15 半平面模型的平动(上)和转动(下)(图片来源于http---bulatov.org)2.gif|图15 半平面模型的平动(上) | | 文件:图15 半平面模型的平动(上)和转动(下)(图片来源于http---bulatov.org)2.gif|图15 半平面模型的平动(上) |
| 文件:图15 半平面模型的平动(上)和转动(下)(图片来源于http---bulatov.org).gif|图15 半平面模型的转动(下)(图片来源于http://bulatov.org) | | 文件:图15 半平面模型的平动(上)和转动(下)(图片来源于http---bulatov.org).gif|图15 半平面模型的转动(下)(图片来源于http://bulatov.org) |
第115行: |
第117行: |
| | | |
| 例如Bands模型,使用双曲函数将圆盘展开拉伸,变成一条带子。于是埃舍尔的鱼便可以游到带子上了。 | | 例如Bands模型,使用双曲函数将圆盘展开拉伸,变成一条带子。于是埃舍尔的鱼便可以游到带子上了。 |
− | <gallery widths="800" heights="400" mode="packed"> | + | <gallery widths="400" heights="400" mode="packed"> |
| 文件:图17 从圆盘模型变换到Bands模型(图片来源于http---bulatov.org).gif|图17 从圆盘模型变换到Bands模型(图片来源于http://bulatov.org) | | 文件:图17 从圆盘模型变换到Bands模型(图片来源于http---bulatov.org).gif|图17 从圆盘模型变换到Bands模型(图片来源于http://bulatov.org) |
| 文件:图18 圆极限Ⅲ的Bands模型版本(图片来源于网络).jpeg|图18 圆极限Ⅲ的Bands模型版本(图片来源于网络) | | 文件:图18 圆极限Ⅲ的Bands模型版本(图片来源于网络).jpeg|图18 圆极限Ⅲ的Bands模型版本(图片来源于网络) |
第122行: |
第124行: |
| | | |
| 有了黎曼映射定理的加持,共形模型还可以变换出星形、环形、螺旋形.…..这就是为什么数学家的信条是,发明(或证明)一个定理才是一件最实用的事! | | 有了黎曼映射定理的加持,共形模型还可以变换出星形、环形、螺旋形.…..这就是为什么数学家的信条是,发明(或证明)一个定理才是一件最实用的事! |
− | <gallery widths="400" heights="300" perrow="2" mode="packed"> | + | <gallery widths="400" heights="300" perrow="2"> |
| 文件:图19 共形模型的各种变换(图片来源于http---bulatov.org)1.jpg|图19:共形模型的各种变换(图片来源于http://bulatov.org) | | 文件:图19 共形模型的各种变换(图片来源于http---bulatov.org)1.jpg|图19:共形模型的各种变换(图片来源于http://bulatov.org) |
| 文件:图19 共形模型的各种变换(图片来源于http---bulatov.org)2.jpg|图19:共形模型的各种变换(图片来源于http://bulatov.org) | | 文件:图19 共形模型的各种变换(图片来源于http---bulatov.org)2.jpg|图19:共形模型的各种变换(图片来源于http://bulatov.org) |
第174行: |
第176行: |
| 文件:图27 双曲面与庞加莱圆盘(二)(图片来源于网络).png|图27 双曲面与庞加莱圆盘(二)(图片来源于网络) | | 文件:图27 双曲面与庞加莱圆盘(二)(图片来源于网络).png|图27 双曲面与庞加莱圆盘(二)(图片来源于网络) |
| 文件:图27 双曲面与庞加莱圆盘(二)(图片来源于网络)2.jpg|图27 双曲面与庞加莱圆盘(二)(图片来源于网络) | | 文件:图27 双曲面与庞加莱圆盘(二)(图片来源于网络)2.jpg|图27 双曲面与庞加莱圆盘(二)(图片来源于网络) |
− | </gallery>从坐标原点向双曲面投影,在顶点的切平面上将得到克莱因圆盘(注意圆盘上的测地线是直线)。<gallery mode="packed" widths="400" heights="300"> | + | </gallery> |
| + | 从坐标原点向双曲面投影,在顶点的切平面上将得到克莱因圆盘(注意圆盘上的测地线是直线)。 |
| + | <gallery mode="packed" widths="400" heights="300"> |
| 文件:图28 双曲面与克莱因圆盘(图片来源于网络).png|图28 双曲面与克莱因圆盘(图片来源于网络) | | 文件:图28 双曲面与克莱因圆盘(图片来源于网络).png|图28 双曲面与克莱因圆盘(图片来源于网络) |
| 文件:图28 双曲面与克莱因圆盘(图片来源于网络)2.png|图28 双曲面与克莱因圆盘(图片来源于网络) | | 文件:图28 双曲面与克莱因圆盘(图片来源于网络)2.png|图28 双曲面与克莱因圆盘(图片来源于网络) |