更改

跳到导航 跳到搜索
添加1,217字节 、 2024年4月25日 (星期四)
无编辑摘要
第1行: 第1行:  +
 
因果涌现理论最初是由Erick Hoel提出,使用有效信息来量化离散马尔可夫动力学的因果性强弱。2020 年,Klein 等人尝试将该方法应用于复杂网络中,然后为了量化复杂网络中的因果涌现,需要解决如下问题:定义网络中的动力学,定义有效信息,网络如何粗粒化等问题。
 
因果涌现理论最初是由Erick Hoel提出,使用有效信息来量化离散马尔可夫动力学的因果性强弱。2020 年,Klein 等人尝试将该方法应用于复杂网络中,然后为了量化复杂网络中的因果涌现,需要解决如下问题:定义网络中的动力学,定义有效信息,网络如何粗粒化等问题。
   第10行: 第11行:  
为了识别复杂网络中的因果涌现,需要对网络进行粗粒化,然后比较宏观网络与微观网络的有效信息,判断能否发生因果涌现。粗粒化方法包括:贪婪算法、谱分解方法以及机器学习方法。
 
为了识别复杂网络中的因果涌现,需要对网络进行粗粒化,然后比较宏观网络与微观网络的有效信息,判断能否发生因果涌现。粗粒化方法包括:贪婪算法、谱分解方法以及机器学习方法。
 
===贪婪算法===
 
===贪婪算法===
 +
===谱分解方法===
 +
===机器学习方法===
 +
困难:
 +
1. 初始化分组矩阵的选择,多次重复实验会得到不一样的结果
 +
2. 依赖神经网络的超参,如学习率、迭代次数等
 +
 +
通过对节点进行分组,并构建宏观网络。将微观节点合并成宏观节点时,对应宏观网络的转移概率矩阵也要进行相应的处理. 通过使用高阶节点显式地对高阶依赖项建模(HOMs),保证分组后的宏观网络和原始网络具有相同的随机游走动力学。具体来说,不同的类型为微观网络合并成宏观节点时边权有不同的处理方式,包括四种处理方法,1)待合并的节点之间没有连边,且输入节点都指向待合并节点,待合并节点都指向相同节点,如图b,输入权重相加,输出权重取平均;2)待合并的节点之间没有连边时,待合并节点指向多个节点时,如图c,输入边权加和,出边的边权按比例加权求和;3)当节点间存在连边时,如图d,需要计算待合并节点的平稳分布,然后采用方法2的方式计算;4)更为复杂的情况,如图e,综合考虑方法2和方法三。
 +
[[文件:Coarse.png|缩略图]]
1,177

个编辑

导航菜单