更改

无编辑摘要
第31行: 第31行:  
纯粹的置换矩阵在所有可能的TPM中非常稀少,所以大多数的TPM并不是严格动力学可逆的。因此,需要一个指标来刻画任意一个TPM接近动力学可逆的程度。  
 
纯粹的置换矩阵在所有可能的TPM中非常稀少,所以大多数的TPM并不是严格动力学可逆的。因此,需要一个指标来刻画任意一个TPM接近动力学可逆的程度。  
   −
考虑P的秩r,当且仅当r<N(N为矩阵的维数)的时候,P是不可逆的;且P越退化对应着越小的r。然而,非退化(满秩)的矩阵P并不总是动力学可逆的,因为:1. 尽管<math>
+
考虑P的秩r,当且仅当r<N(N为矩阵的维数)的时候,P是不可逆的;且P越退化对应着越小的r。然而,非退化(满秩)的矩阵P并不总是动力学可逆的,因为:1. 尽管<math>
 
P^{-1}
 
P^{-1}
 
</math>存在,<math>
 
</math>存在,<math>
140

个编辑